Механизмы действия гормонов поджелудочной железы

Поджелудочная железа Поджелудочная железа относится к смешанным железам. В ней одновременно с образованием пищеварительного сока секретируются гормоны, поступающие в кровь. Эндокринная часть железы представлена группами панкреатических островков Лангерганса диаметром 100-300 мкм, которые сформированы яйцевидными клеточными скоплениями, богатыми капиллярами и разбросанными по телу поджелудочной железы. Они составляют около 2% объема железы, тогда как вся эндокринная часть — 80%, остальное приходится на протоки и кровеносные сосуды.

Общее количество островков колеблется в пределах 1-2 млн. Каждый из них имеет хорошее кровоснабжение, кровь из них поступает в воротнню вены печени. Клетки в островках разделяют на типы по их морфологическим свойствам. У человека различают четыре различных типа клеток: 1) А, 2) В, 3) D и 4) F. Эти клетки называют также  1) альфа, 2) бета, 3) дельта, 4) ПП или PP.  Клетки А (альфа) секретируют глюкагон (10-30% от общего количества клеток островков), клетки В (бета) — инсулин (60-80%), клетки D (дельта) — соматостатин (около 10%) и F (ПП, PP) — панкреатический полипептид (3-5%).

Клетки типа В расположены в центре каждого островка, окружены клетками A, D и F. Островки на теле, хвосте, передней и верхней части головки поджелудочной железы человека имеют много А-клеток и лишь несколько F- клеток во внешней части, тогда как в задней — сравнительно много F-клеток и мало типа А.

Доказано также наличие в островковом аппарате эпсилон-клеток (менее 1% всего пула клеток островковков), которые секретируют «гормон голода» грелин, возбуждающий аппетит.

В островках поджелудочной железы образуются три основных гормона: инсулин, глюкагон и соматостатин. Все они являются белками.

Инсулин.

Синтезируется в В (бета) клетках; полипептид, состоящий из двух пептидных цепей, соединенных дисульфидными мостиками. Синтезированный сначала в виде проинсулина, гормон, проходя через аппарат Гольджи, накапливается в гранулах уже в виде активного инсулина. Эти процессы проходят с участием цАМФ. Основным стимулятором синтеза проинсулина является глюкоза, в меньшей степени — манноза и лейцин.

На образование инсулина влияют и гормоны — СТГ, глюкагон, адреналин. Но, например, глюкагон стимулирует синтез инсулина только при наличии глюкозы, то есть, в данном случае он является агонистом глюкозы. Образование гормона возрастает при условии потребления пищи с высоким содержанием углеводов, в случае ожирения, беременности, а также в условиях хронического избытка гормона роста. Образование гормона тормозится на фоне повышения в крови уровня адреналина, низкого содержания в пище углеводов и высокого — жиров, во время голодания.

Непосредственным катализатором секреции готового гормона инсулина служат ионы кальция. Поэтому процессы, приводящие к увеличению внутри В (бета) — клеток этих ионов, обеспечивают рост концентрации гормона в крови. Наиболее мощными стимуляторами синтеза является сама глюкоза или её метаболиты.

Поступление инсулина в кровь приводит к снижению в ней уровня глюкозы. Механизм действия инсулина определяется его взаимодействием с рецепторами клеточных мембран. Плотность рецепторов, как и их сродство с гормоном, непостоянны. Так, чувствительность к инсулину повышается при голодании, а в случае увеличения концентрации гормона в крови, наоборот, прогрессивно снижается.

Физиологические эффекты инсулина долгосрочные и сложные, их можно разделить на быстрые, промежуточные и медленные.

Главным эффектом гормона является увеличение трансмембранного транспорта глюкозы, что обеспечивает усвоение её клетками, и, соответственно, снижение концентрации глюкозы в крови. Особенно это характерно для клеток печени и скелетных мышц. В печени инсулин обеспечивает усиление синтеза гликогена из глюкозы, а в высокой концентрации может даже ингибировать ферменты, расщепляющие гликоген, и тем самым блокировать его использование.

Влияние на печень ярко проявляется после еды, благодаря чему глюкоза из крови быстро поступает в депо. В случае избытка гликогена в клетках печени под влиянием инсулина из глюкозы синтезируется жир. В скелетных мышцах поступившая глюкоза может использоваться для синтеза гликогена (если мышца не сокращается) или для образования АТФ при выполнении физической работы.

Читайте также:  Панкреатит что любит и что не любит поджелудочная железа

При недостаточной выработке инсулина развивается сахарный диабет. В этом случае ткани не могут в полной мере потреблять глюкозу из крови, поскольку нарушается её транспорт в клетки, что приводит к накоплению глюкозы в крови (гипергликемии) и появлению сахара в моче. Поскольку глюкоза является основным энергетическим веществом организма, в клетках происходит интенсивное окисление жиров и накопление продуктов их распада — ацетона, ацетоуксусной и p-гидроксимасляной кислот (кетоновых тел). Эти вещества, накапливаясь в крови, оказывают токсическое воздействие на ЦНС, вызывая развитие тяжелого состояния — диабетической комы.

Инсулин оказывает также и стимулирующее влияние на рост. Это митогенное влияние гормона, вероятно, обусловлен его участием в синтезе печеночного соматомедина. Возможно, это обусловлено участием инсулина в белковом обмене: под влиянием гормона активируется трансмембранный транспорт многих, хотя и не всех, аминокислот, также инсулин повышает скорость транскрипции ДНК в ядре клеток.

Инсулин влияет также на обмен жиров. Избыток глюкозы, поступившей в печень под влиянием инсулина, превращается не в гликоген, а в жир, а образующиеся жирные кислоты транспортируются кровью в жировую ткань. Аналогично влияние инсулина на образование жиров и в клетках жировой ткани.

Таким образом, хотя инсулин и является одним из основных регуляторов углеводного обмена, он участвует в регуляции обмена и других органических соединений. Поэтому в случае его недостатка (при диабете) наступают значительные патологические изменения в организме.

Глюкагон.

Пептид, как и инсулин, образуется путем протеолиза из прогормона. Кристаллы активного гормона образуют А (альфа)-клетки островков поджелудочной железы и клетки верхнего отдела пищеварительного тракта. Секреция глюкагона подавляется вследствие повышения внутри клетки концентрации свободного кальция, что происходит, например, под влиянием глюкозы.

Глюкагон является одним из основных физиологических антагонистов инсулина, что особенно проявляется на фоне дефицита последнего. Глюкагон влияет прежде всего на печень, где стимулирует расщепление гликогена (гликогенолиз), обеспечивая таким образом быстрый рост концентрации глюкозы в крови. Биологические эффекты гормона обусловлены взаимодействием с соответствующим рецептором и последующей стимуляцией образования цАМФ. Под влиянием гормона также стимулируется расщепление белков, липидов, а синтез белков и жиров подавляется.

Соматостатин.

Синтезированый в D (дельта)-клетках островков полипептид соматостатин имеет короткий период полураспада (около 5 мин). Конечно, стимуляторы секреции инсулина повышают образование и соматостатина, который преимущественно ингибирует секрецию инсулина, глюкагона, а также гормона роста.

Таким образом, между отдельными клетками островков Лангерганса проявляется тесная взаимосвязь: инсулин ингибирует секреторную активность А (альфа) клеток, глюкагон — стимулирует секрецию В (бета) клеток, а соматостатин ингибирует активность А (альфа) и В (бета) — клеток.

Источник

II. Гормоны поджелудочной железы и механизм их действия

Инсулин является гормоном и образуется в ?-клетках поджелудочной железы из его предшественника – проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Относительная молекулярная масса инсулина 6000, он является сложным полипептидом. Молекула инсулина состоит из двух цепей, А и В, соединенных дисульфидными мостиками. Цепь А содержит 21, а цепь В – 30 аминокислотных остатков.

Проинсулин – это полипептид, состоящий из 86 аминокислотных остатков. Его молекулярная масса около 10 000. Молекула проинсулина представляет собой молекулу инсулина, замкнутую пептидом, который был назван соединяющим, или С-пептидом. Он делает молекулу инсулина биологически неактивной.

Протеолитические ферменты воздействуют на проинсулин, в ?-клетках образуется инсулин и С-пептид, которые затем поступают в кровь в эквимолярных количествах. Содержание проинсулина в поджелудочной железе составляет 1–2 % от содержания инсулина.

Биосинтез и секрецию инсулина в основном стимулирует глюкоза. Показана двухфазность секреции инсулина в ответ на увеличение содержания сахара в крови. Первоначальный подъем его уровня связывают с секрецией накопленного ранее ?-клетками инсулина, а вторичный – с выделением вновь образованного.

Читайте также:  Где на кавказе лечить поджелудочную железу

В крови инсулин находится в свободной и связанной с белками плазмы формах. Свободный инсулин стимулирует поглощение глюкозы нервной и мышечной тканью, реагирует с антителами к кристаллическому инсулину.

Связанная форма инсулина проявляет свою активность только на жировой ткани и иммунологически не активна.

Инсулин является анаболическим гормоном, усиливающим синтез углеводов, белков, нуклеиновых кислот и жира. Его влияние на углеводный обмен выражается в увеличении транспорта глюкозы в клетки инсулинзависимых тканей, стимуляции синтеза гликогена в печени, а также понижении уровня сахара в крови. Влияние инсулина на белковый обмен выражается в стимуляции транспорта аминокислот через цитоплазматическую мембрану клеток, синтеза белка и торможения его распада. Его участие в жировом обмене характеризуется включением жирных кислот в триглицериды жировой ткани, стимуляцией синтеза липидов и подавлением липолиза.

Уровень инсулина в крови можно определить с помощью биологической и радиоиммунологической методик.

Радиоиммунологические методы основаны на антигенных свойствах инсулина. Нормальная базальная концентрация иммунореактивного инсулина в плазме крови– 10–20 мкЕД/мл, С-пептида – 0,9–3,5 нг/мл. Секрецию инсулина повышает стимуляция парасимпатической нервной системы и уменьшает стимуляция симпатической нервной системы.

Глюкагон так же, как и инсулин, является полипептидом и состоит из 29 аминокислотных остатков. В отличие от инсулина он невидоспецифичен. Его молекулярная масса 3485 дальтон. Глюкагон образуется из своего предшественника проглюкагона, который лишен гликогенолитической активности.

Секрецию глюкагона регулируют глюкоза, аминокислоты, гастроинтестинальные гормоны и симпатическая нервная система. Ее усиливают гипогликемия (снижение сахара в крови), аргинин, гастроинтестинальные гормоны, особенно панкреозимин, факторы, стимулирующие симпатическую нервную систему (физическая нагрузка и др.), уменьшение содержания в крови свободных жирных кислот. Угнетают продукцию глюкагона соматостатин, гипергликемия (повышение уровня сахара в крови), повышенный уровень свободных жирных кислот в крови. Содержание глюкагона в крови повышается при декомпенсированном сахарном диабете, опухоли поджелудочной железы – глюкагономе. Период полураспада глюкагона составляет 10 мин.

Основной механизм действия глюкагона характеризуется увеличением продукции глюкозы печенью путем стимуляции его распада. При введении фармакологических доз гормона снижаются уровни калия и кальция в сыворотке крови, уменьшается секреция хлористоводородной кислоты и ферментов поджелудочной железы.

Распад глюкагона в отличие от инсулина происходит не в печени, а в почках. Нормальная базальная концентрация иммунореактивного глюкагона в сыворотке крови составляет 75-150 пг/мл.

Соматостатин представляет собой тетрадекапептид, состоящий из 13 аминокислотных остатков и является веществом, которое подавляет выработку не только гормона роста, но и инсулина, глюкагона, ряда гормонов желудочно-кишечного тракта.

Противоречивость данных не позволяет объяснить влияние соматостатина на секрецию островковых клеток поджелудочной железы.

Биологическая роль соматостатина заключается в подавлении секреции соматотропного гормона, адренокортикотропного гормона, тиреотропного гормона, гастрина, глюкагона, инсулина, мотиллина, ренина, секретина, вазоактивного желудочного пептида, желудочного сока, панкреатических ферментов и электролитов. Он понижает сократимость желчного пузыря, кровоток внутренних органов (на 30–40 %), перистальтику кишечника, а также уменьшает электровозбудимость нервов.

Период полураспада парентерально введенного соматостатина составляет 1–2 мин. Содержание соматостатина в плазме крови здоровых лиц составляет 10–25 пг/л и повышается у больных сахарным диабетом 1-го типа, акромегалией и при соматостатиноме – опухоли поджелудочной железы.

В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона – повышается, особенно на 3-5-й день голодания (примерно в 3–5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и способствует пополнению запасов гликогена в печени. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Повышенная продукция глюкагона повышает в крови уровень свободных жирных кислот, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот.

Читайте также:  Метод обследование поджелудочной железы

После приема пищи (углеводистой) наблюдается быстрое повышение уровня инсулина и уменьшение содержания глюкагона в крови. Первый вызывает ускорение синтеза гликогена и утилизацию глюкозы инсулинозависимыми тканями. Белковая пища (например, 200 г мяса) стимулирует резкий подъем концентрации в крови глюкагона (на 50-100 %) и незначительный – инсулина, что способствует увеличению продукции глюкозы печенью.

Следующая глава >

Содержание >

Похожие главы из других книг

Глава 2. Железы внутренней секреции, гормоны, механизмы их действия
Чтобы понять, как функционируют эндокринные органы, и в частности щитовидная железа, необходимо кратко рассмотреть механизм действия гормонов.

Рис. 1. Схема расположения эндокринных органовЭндокринную

4. Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы
Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный

5. Гормоны поджелудочной железы. Нарушение функции поджелудочной железы
Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков

33. Гормоны поджелудочной железы
Нарушение функции поджелудочной железыПоджелудочная железа – железа со смешанной функцией.Морфологической единицей железы служат островки Лангерганса. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон,

Гормоны поджелудочной железы

Инсулин
Инсулин – основной регулятор обмена углеводов. Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:• инсулин – единственный гормон, снижающий концентрацию глюкозы в крови;• глюкагон, гормон роста и

Гормоны поджелудочной железы
Поджелудочная железа вырабатывает только два гормона, однако переоценить их важность невозможно. Первый — инсулин. Он регулирует углеродный обмен в организме, отвечает за переработку глюкозы, стимулирует синтез белков и т. д. Сахарный

Глава 2. Рыдающее дыхание — важнейший механизм восстановления функции поджелудочной железы по выработке инсулина
Учитесь правильно дышатьОсновная причина заболевания поджелудочной железы — в неправильном дыхании больных диабетом. Испытывая дефицит кислорода,

Глава

Механизм действия гормонов
Гормоны были открыты учеными в 1902 году. Согласно определению большинства специалистов, это органические химические соединения, вырабатываемые определенными железами и клетками и оказывающие сложное и многогранное воздействие на

5.1. Механизм действия
В ультразвуковой хирургии используют инструменты, режущий край которых непрерывно колеблется с частотой от 10 до 100 кГц и амплитудой 5-50 мкм.Источники получения ультразвука подразделяют на две группы:1) механические;2) электрические.В механических

6.1. Механизм действия
Механизм действия криохирургических инструментов основан на быстром локальном замораживании криоагентом патологического образования.Указанное действие может быть произведено в двух режимах:1) контактном – с последующим удалением (извлечением)

7.1. Механизм действия
Плазменный поток, предназначенный для рассечения тканей, образуется при пропускании через высокоскоростную струю инертного газа электрического тока большой силы:– плазмообразующий газ – аргон;– ток разряда – 10–30 А;– напряжение разряда – 25–35

Дядя Галина Ивановна
Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной

Гормоны поджелудочной железы
Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент — это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную

Гормоны поджелудочной железы
ИнсулинИнсулин – основной регулятор обмена углеводов. Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:• инсулин – единственный гормон, снижающий концентрацию глюкозы в крови;• глюкагон, гормон роста и

Механизм действия гормонов
Протеиновые и стероидные гормоны отличаются друг от друга не только по химической структуре, но и по механизму действия.Стероидные гормоны и производные аминокислот (тироксин) действуют внутриклеточно. Они распознаются специфическими

Источник