Поджелудочная железа синтез гликогена
Поджелудочная железа относится к железам со смешанной секрецией. Внешнесекреторная функция ее заключается в синтезе ряда ключевых ферментов пищеварения, в частности амилазы, липазы, трипсина, химо-трипсина, карбоксипептидазы и др., поступающих в кишечник с соком поджелудочной железы. Внутрисекреторную функцию выполняют, как было установлено в 1902 г. Л.В. Соболевым, панкреатические островки (островки Лангерганса), состоящие из клеток разного типа и вырабатывающие гормоны, как правило, противоположного действия. Так, α- (или А-) клетки продуцируют глюкагон, β- (или В-) клетки синтезируют инсулин, δ-(или D-) клетки вырабатывают соматостатин и F-клетки – малоизученный панкреатический полипептид. Далее будут рассмотрены инсулин и глюкагон как гормоны, имеющие исключительно важное значение для жизнедеятельности организма.
Инсулин. Инсулин, получивший свое название от наименования панкреатических островков (лат. insula – островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером. В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В – пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин.
Существенных различий в аминокислотной последовательности в инсулине от разных животных нет. Инсулины различаются аминокислотным составом цепи А в положениях 8–10.
Согласно современным представлениям, биосинтез инсулина осуществляется в β-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический синтез. Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка; он лишен биологической, т.е. гормональной, активности.
Синтезированный из проинсулина инсулин может существовать в нескольких формах, различающихся по биологическим, иммунологическим и физико-химическим свойствам. Различают две формы инсулина: 1) свободную, вступающую во взаимодействие с антителами, полученными к кристаллическому инсулину, и стимулирующую усвоение глюкозы мышечной и жировой тканями; 2) связанную, не реагирующую с антителами и активную только в отношении жировой ткани.
В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Так, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот,– замедление секреции инсулина. Этот феномен контроля по типу обратной связи рассматривается как один из важнейших механизмов регуляции содержания глюкозы в крови. На секрецию инсулина оказывают влияние, кроме того, электролиты (особенно ионы кальция), аминокислоты, глюкагон и секретин. Приводятся доказательства роли циклазной системы в секреции инсулина. Предполагают, что глюкоза действует в качестве сигнала для активирования аденилат-циклазы, а образовавшийся в этой системе цАМФ – в качестве сигнала для секреции инсулина.
При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание – сахарный диабет. Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты: в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора.
У экспериментальных животных введение инсулина вызывает гипогликемию (снижение уровня глюкозы в крови), увеличение запасов гликогена в мышцах, усиление анаболических процессов, повышение скорости утилизации глюкозы в тканях. Кроме того, инсулин оказывает опосредованное влияние на водный и минеральный обмен.
Механизм действия инсулина окончательно не расшифрован, несмотря на огромное количество фактических данных, свидетельствующих о существовании тесной и прямой зависимости между инсулином и процессами обмена веществ в организме. В соответствии с «унитарной» теорией все эффекты инсулина вызваны его влиянием на обмен глюкозы через фермент гексокиназу. Новые экспериментальные данные свидетельствуют, что усиление и стимуляция инсулином таких процессов, как транспорт ионов и аминокислот, трансляция и синтез белка, экспрессия генов и др., являются независимыми. Это послужило основанием для предположения о множественных механизмах действия инсулина.
Глюкагон.Глюкагон впервые был обнаружен в коммерческих препаратах инсулина еще в 1923 г., однако только в 1953 г. венгерский биохимик Ф. Штрауб получил этот гормон в гомогенном состоянии. Глюкагон синтезируется в основном в α-клетках панкреатических островков поджелудочной железы, а также в ряде клеток кишечника. Он представлен одной линейно расположенной полипептидной цепью, в состав которой входит 29 аминокислотных остатков в следующей последовательности:
Н–Гис–Сер–Глн–Гли–Тре–Фен–Тре–Сер–Асп–Тир–Сер–Лиз–Тир–Лей– Асп–Сер–Aрг–Aрг–Ала–Глн–Асп–Фен–Вал–Глн–Трп–Лей–Мет–Асн––Тре–ОН
Первичная структура глюкагонов человека и животных оказалась идентичной; исключение составляет только глюкагон индюка, у которого вместо аспарагина в положении 28 содержится серин. Особенностью структуры глюкагона является отсутствие дисульфидных связей и цистеина. Глюкагон образуется из своего предшественника проглюкагона, содержащего на С-конце полипептида дополнительный октапептид (8 остатков). Имеются данные, что у проглюкагона, так же как и у проинсулина, существует предшественник – препроглюкагон (мол. масса 9000), структура которого пока не расшифрована.
По биологическому действию глюкагон, как и адреналин, относятся к гипергликемическим факторам, вызывает увеличение концентрации глюкозы в крови главным образом за счет распада гликогена в печени. Органами-мишенями для глюкагона являются печень, миокард, жировая ткань, но не скелетные мышцы. Биосинтез и секреция глюкагона контролируются главным образом концентрацией глюкозы по принципу обратной связи. Таким же свойством обладают аминокислоты и свободные жирные кислоты. На секрецию глюкагона оказывают влияние также инсулин и инсулиноподобные факторы роста.
Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови.
Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбок-сикилазы – ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Существуют и различия в физиологическом действии: в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована. Таким образом, панкреатические островки, синтезирующие два противоположного действия гормона – инсулин и глюкагон, выполняют ключевую роль в регуляции обмена веществ на молекулярном уровне.
Дата добавления: 2015-02-27; просмотров: 990; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9303 — | 7286 — или читать все…
Читайте также:
Источник
Все процессы в организме человека регулируются с помощью центральной нервной системы и гормонов, которые вырабатываются эндокринными органами. Отлаженные механизм позволяет быстро адаптироваться к внешним и внутренним негативным факторам.
Поджелудочная железа — уникальный орган, которые принимает не только участие в процессах пищеварения, но и предстает своеобразной «фабрикой», синтезирующей необходимые вещества для нормальной жизнедеятельности.
Внутренний орган состоит из эндокринной части, которая способствует продуцированию ферментов пищеварения и панкреатических островков, где синтезируются гормоны поджелудочной железы. Они помогают регулировать углеводный, белковый и жировой обмен.
Даже незначительный сбой в функционировании органа может привести к серьезным последствиям. Дефицит или избыток гормонов нарушают работу внутренних органов.
Основные гормоны, синтезируемые поджелудочной железой
Главный гормон, который способна секретировать поджелудочная железа — это инсулин. Он представляет собой полипептид, который включает в свой состав 51 аминокислоту. За его синтезирование отвечают бета-клетки, располагающиеся в панкреатических островках.
Гормон инсулин вырабатывается в поджелудочной железе, выполняет ряд функций. Он отвечает за регуляцию сахара в организме, способствует торможению синтеза глюкозы в печени, помогает снизить скорость распада глюкагона.
Если нарушается такая «биохимия» в организме человека, то наблюдается рост сахара в крови, что увеличивает вероятность развития сахарного диабета в несколько раз.
Белковый гормон инсулин активизирует секрецию жирных кислот. Влияет на продуцирование веществ ЖКТ, гормонов роста и эстрогенов.
Помимо инсулина поджелудочная железа синтезирует следующие вещества:
- Гастрин.
- Амилин.
- Панкреатический полипептид.
- Глюкагон.
- С-пептид.
Липокаин может рассматриваться как второй гормон, вырабатываемый внутренним органом (помимо инсулина). Он тормозит развитие жировой инфильтрации печени, стимулирует липотропный обмен.
Функции гормональных веществ
Инсулин является гормоном, который воздействует на все клетки организма. Основной функционал вещества — поддержание концентрации сахара в крови на требуемом уровне. Гормон запускает многие биохимические процессы в организме, которые обеспечивают требуемый результат.
Небольшое количество глюкозы всегда содержится в печени и мышцах, это является стратегическим запасом для организма человека. Этот запас представлен в виде гормона гликогена, который при надобности трансформируется в исходное состояние. Иными словами, преобразуется в глюкозу. Синтез гликогена происходит в печени, лейкоцитах и мышечной ткани. Гормон — главная форма существования углеводов в человеческом организме.
Глюкагон — еще одно вещество поджелудочной железы. Он помогает расщепляться гликогену, чтобы высвободилась глюкоза; способствует расщеплению липидов, вследствие чего в жировых клетках возрастает ферментированная липаза.
Функции соматостатина:
- Снижает концентрацию глюкагона.
- Замедляет выведение желудочного сока.
- Замедляет синтезирование соляной кислоты.
- Угнетает выработку панкреатических ферментов.
- Снижает объем крови в брюшной полости.
Панкреатический полипептид был выявлен сравнительно недавно. Влияние эндокринного гормона до конца не изучено.
Большинство ученых сходятся во мнении, что вещество способствует «экономии» пищеварительных панкреатических ферментов.
Лабораторное исследование поджелудочной железы
Анализ на ферменты поджелудочной железы — это анализ крови, который обеспечивает выявление всех нарушений разнообразного патогенеза в работе и состоянии внутреннего органа. Он применяется для диагностики заболеваний поджелудочной железы.
В эндокринологии данное исследование имеет несколько показаний. Назначается при клинических симптомах болезней внутреннего органа, также рекомендуется при подозрении на гипофункцию или гиперфункцию поджелудочной железы.
Результаты обследования помогают оценить функциональность внутреннего органа, степень имеющихся повреждений; дифференцировать болезнь от других заболеваний. Кроме того, анализ рекомендуется для наблюдения за больными с хроническим панкреатитом, желчекаменной болезнью и др. недугами; выявить опухолевые новообразования в поджелудочной.
Анализ проводится для взрослого и ребенка. Особой подготовки не существует. Главное — нельзя курить за 30 минут до забора крови. В качестве биологического материала используется венозная жидкость.
Определяется содержание следующих показателей:
- С-пептид определяется с помощью ферментного исследования.
- Определение сахара в плазме крови.
- Липаза определяется колориметрическим способом.
- Амилаза общая в сыворотке крови, билирубин общий, патобиохимия холинэстеразы.
- С-реактивный белок.
Если по результатам расшифровки увеличена активность ферментов железы, возрос уровень реактивного белка, то это говорит об острой форме панкреатита. Патологический уровень сахара и С-пептида указывает на дисфункцию внутреннего органа.
Проверка поджелудочной железы назначается в следующих случаях:
- Подозрение на опухоль.
- При симптоматике вероятного поражения органа (боль в верхнем отделе живота, рвота, изменение цвета стула — эти симптомы могут свидетельствовать о серьезном нарушении, вплоть до расстройства всасывания питательных веществ в кишечнике).
- Если инструментальные методы диагностики показали структурные изменения внутреннего органа.
- При наличии наследственного фактора к патологиям органа.
- Профилактическое обследование.
Дополнительно могут назначаться другие исследования, например, гемотест, ультразвуковое исследование, компьютерная томография органов брюшной полости. Это необходимо для того чтобы исключить вероятные патологии других внутренних органов и систем, уточнить патогенез патологических процессов в организме. Итоги обследования анализируются с учетом симптомов, продолжительности патологии, сопутствующих недугов.
Гормоны, вырабатываемые поджелудочной, влияют на все аспекты жизнедеятельности человеческого организма. Они должны участвовать во многих процессах, чтобы поддерживать нормальную работу органов и систем. Все в организме взаимосвязано, поэтому немаловажное значение имеют и другие гормоны.
Тироксин вырабатывается щитовидной железой. Он воздействует на показатели артериальное давление человека, способствуя его повышению. Физиология, энергичность, подвижность также зависят от концентрации вещества в крови. Дефицит приводит к избыточному весу, постоянной усталости, ломкости волос и ногтей, пониженному давлению и пр. симптомам. Для лечения фармакология предлагает синтетические препараты, которые включают в свой состав искусственный тироксин.
Гормон адреналин вырабатывается в надпочечниках. При избытке вещества оказывается влияние на психическое и физическое состояние. При увеличении концентрации возрастает артериальное давление, что будет являться большим риском инфаркта, если в анамнезе проблемы с сердечно-сосудистой системой; резко понижается содержание сахара в организме.
Гормоны, которые синтезируются поджелудочной железой, необходимы для поддержания нормальной работы организма. Если наблюдается их дефицит или избыток, то требуется коррекция уровня веществ с помощью медикаментов и питания.
Информация о гормонах поджелудочной железы предоставлена в видео в этой статье.
Смотрите видео: Гормоны молодости и гормоны старения. Как гормоны влияют на организм человека? [Галина Гроссманн]
Источник
Гормонами поджелудочной железы являются инсулин и глюкагон.
Глюкагон
Строение
Представляет собой полипептид, включающий 29 аминокислот с молекулярной массой 3,5 кДа и периодом полураспада 3-6 мин.
Синтез
Осуществляется в клетках поджелудочной железы и в клетках тонкого кишечника.
Регуляция синтеза и секреции
Активируют: гипогликемия, адреналин.
Уменьшают: глюкоза, жирные кислоты.
Механизм действия
Аденилатциклазный активирующий.
Мишени и эффекты
Конечным эффектом является повышение концентрации глюкозы и жирных кислот в крови.
Жировая ткань
- повышает активность внутриклеточной гормон-чувствительной ТАГ-липазы и, соответственно, стимулирует липолиз.
Печень
- активация глюконеогенеза и гликогенолиза,
- за счет повышенного поступления жирных кислот из жировой ткани усиливает кетогенез.
Патология
Гиперфункция
Глюкагонома – редко встречающееся новообразование из группы нейроэндокринных опухолей. У больных отмечается гипергликемия и поражение кожи и слизистых оболочек.
Инсулин
Дополнительная, более подробная информация, об инсулине находится на следующей странице.
Строение
Представляет собой полипептид из 51 аминокислоты, массой 5,7 кД, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками.
Синтез
Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.
Регуляция синтеза и секреции
Активируют синтез и секрецию:
- глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,
- жирные кислоты и аминокислоты,
- влияния n.vagus – находится под контролем гипоталамуса, активность которого определяется концентрацией глюкозы крови,
- гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ингибирующий полипептид,
- хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.
Уменьшают: влияние симпато-адреналовой системы.
Механизм действия
Осуществляется через рецепторы с тирозинкиназной активностью (подробно).
Мишени и эффекты
Основным эффектом является снижение концентрации глюкозы в крови благодаря усилению транспорта глюкозы внутрь миоцитов и адипоцитов и активации внутриклеточных реакций утилизации глюкозы:
- активируя фосфодиэстеразу, которая разрушает вторичный мессенджер цАМФ, инсулин прерывает эффекты адреналина и глюкагона на печень и жировую ткань.
- в мышцах и жировой ткани стимулирует транспорт глюкозы в клетки (активация Глют-4),
- в печени и мышцах ускоряет синтез гликогена (активация гликогенсинтазы).
- в печени, мышцах и адипоцитах инсулин стимулирует гликолиз, активируя фосфофруктокиназу и пируваткиназу.
- полученный в гликолизе пируват превращается в ацетил-SКоА под влиянием активированного инсулином пируватдегидрогеназного комплекса, и далее используется для синтеза жирных кислот. Превращение ацетил-SКоА в малонил-SКоА, первый субстрат синтеза жирных кислот, также стимулируется инсулином (ацетил-SКоА-карбоксилаза).
- в мышцах усиливает транспорт нейтральных аминокислот в миоциты и стимулирует трансляцию (рибосомальный синтез белков).
Ряд эффектов инсулина заключается в изменении транскрипции генов и скорости трансляции ферментов, отвечающих за обмен веществ, за рост и деление клеток.
Благодаря этому индуцируется синтез ферментов метаболизма
- углеводов в печени (глюкокиназа, пируваткиназа, глюкозо-6-фосфатдегидрогеназа),
- липидов в печени (АТФ-цитрат-лиаза, ацетил-SКоА-карбоксилаза, синтаза жирных кислот, цитозольная малатдегидрогеназа) и адипоцитах (ГАФ-дегидрогеназа, пальмитатсинтаза, липопротеинлипаза).
и происходит репрессия фосфоенолпируват-карбоксикиназы (подавление глюконеогенеза).
Инактивация инсулина
Инактивация инсулина начинается после интернализации инсулин-рецепторного комплекса и образования эндосомы, в которой и происходит деградация инсулина. Участвуют две ферментные системы:
- Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями А и В, в результате чего гормон распадается.
- Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот.
Период полужизни инсулина не превышает 5-6 минут. Происходит деградация в основном в печени и почках, но и другие ткани принимают в этом участие. Также в почках инсулин может фильтроваться, захватываться эпителиоцитами проксимальных канальцев и разрушаться до аминокислот.
Патология
Гипофункция
Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.
Источник