Реферат на тему гормоны поджелудочной железы

L/O/G/O

ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Инсулин

Инсули́н (от лат. insula — остров) — гормон
пептидной природы. Молекула инсулина
образована двумя полипептидными цепями,
содержащими 51 аминокислотный остаток:
A-цепь состоит из 21 аминокислотного остатка,
B-цепь образована 30 аминокислотными остатками.
Полипептидные цепи соединяются двумя
дисульфидными мостиками через остатки
цистеина, третья дисульфидная связь расположена
в A-цепи. Первичная структура инсулина
у разных биологических видов несколько
различается, как различается и его важность
в регуляции обмена углеводов. Наиболее
близким к человеческому является инсулин
свиньи, который различается с ним всего
одним аминокислотным остатком: в 30 положении
B-цепи свиного инсулина расположен аланин,
а в инсулине человека — треонин; бычий
инсулин отличается тремя аминокислотными
остатками.

Синтез инсулина в клетке

Синтез и выделение инсулина представляют
собой сложный процесс, включающий несколько
этапов. Первоначально образуется неактивный
предшественник гормона, который после
ряда химических превращений в процессе
созревания превращается в активную форму.
Ген, кодирующий первичную структуру предшественника
инсулина, локализуется в коротком плече
11 хромосомы. На рибосомах шероховатой
эндоплазматической сети синтезируется
пептид-предшественник — т.н. препроинсулин.
Он представляет собой полипептидную
цепь, построенную из 110 аминокислотных
остатков и включает в себя расположенные
последовательно: L-пептид, B-пептид, C-пептид
и A-пептид. Почти сразу после синтеза в
ЭПР от этой молекулы отщепляется сигнальный
(L) пептид — последовательность из 24 аминокислот,
которые необходимы для прохождения синтезируемой
молекулы через гидрофобную липидную
мембрану Эндоплазматический ретикулум
(ЭПР). Образуется проинсулин, который
транспортируется в комплекс Гольджи,
далее в цистернах которого происходит
так называемое созревание инсулина. Созревание
является наиболее длительным этапом
образования инсулина. В процессе созревания
из молекулы проинсулина с помощью специфических
эндопептидаз вырезается C-пептид — фрагмент
из 31 аминокислоты, соединяющий B-цепь
и A-цепь. То есть молекула проинсулина
разделяется на инсулин и биологически
инертный пептидный остаток. В секреторных
гранулах инсулин, соединяясь с ионами
цинка, образует кристаллические гексамерные
агрегаты.

Структурная формула

На схеме показана последовательность
аминокислот в молекуле инсулина: А-цепь
содержит 21 аминокислотный остаток, Б-цепь
– 30.

Для сравнения показана структурная
формула инсулина в виде объемной шаростержневой
модели.

Секреция инсулина

Бета-клетки островков Лангерганса поджелудочной
железы чувствительны к изменению уровня
глюкозы в крови; выделение ими инсулина
в ответ на повышение концентрации глюкозы
реализуется по следующему механизму:

    • Глюкоза свободно транспортируется в бета-клетки специальным белком-переносчиком GluT 2
    • В клетке глюкоза подвергается гликолизу
      и далее окисляется в дыхательном цикле
      с образованием АТФ; интенсивность синтеза
      АТФ зависит от уровня глюкозы в крови.
    • АТФ регулирует закрытие ионных калиевых
      каналов, приводя к деполяризации мембраны.
    • Деполяризация вызывает открытие потенциал-зависимых кальциевых каналов, это приводит к току кальция в клетку.
    • Повышение уровня кальция в клетке активирует фосфолипазу C, которая расщепляет один из мембранных фосфолипидов — фосфатидилинозитол-4,5-бифосфат — на инозитол-1,4,5-трифосфат и диацилглицерат.
    • Инозитолтрифосфат связывается с рецепторными белками ЭПР. Это приводит к высвобождению связанного внутриклеточного кальция и резкому повышению его концентрации.
    • Значительное увеличение концентрации
      в клетке ионов

кальция приводит к высвобождению заранее
синтезированного

инсулина, хранящегося в секреторных
гранулах. В зрелых

секреторных гранулах кроме инсулина
и C-пептида находятся

ионы цинка и небольшие количества проинсулина
и промежуточных

форм. Выделение инсулина из клетки происходит
путём

экзоцитоза — зрелая секреторная гранула
приближается

к плазматической мембране и сливается
с ней, и содержимое

гранулы выдавливается из клетки. Изменение
физических свойств

 среды приводит к отщеплению 
цинка и распаду кристаллического

 неактивного инсулина на 
отдельные молекулы, которые и 
обладают 

биологической активностью.

Регуляция образования и секреции инсулина 

Главным стимулятором освобождения инсулина
является повышение уровня глюкозы в крови.
Дополнительно образование инсулина и
его выделение стимулируется во время
приёма пищи, причём не только глюкозы
или углеводов. Секрецию инсулина усиливают
аминокислоты, особенно лейцин и аргинин,
некоторые гормоны гастроэнтеропанкреатической
системы: холецистокинин, ГИП, ГПП-1, а также
такие гормоны, как глюкагон, АКТГ, СТГ,
эстрогены и др., препараты сульфонилмочевины.
Также секрецию инсулина усиливает повышение
уровня калия или кальция, свободных жирных
кислот в плазме крови. Понижается секреция
инсулина под влиянием соматостатина.
Бета-клетки также находятся под влиянием
автономной нервной системы.

Парасимпатическая часть (холинергические
окончания блуждающего нерва) стимулирует
выделение инсулина

Симпатическая часть (активация α2-адренорецепторов)
подавляет выделение инсулина. Причём
синтез инсулина заново стимулируется
глюкозой и холинергическими нервными
сигналами.

Механизм действия инсулина 

Так или иначе, инсулин затрагивает все
виды обмена веществ во всём организме.
Однако в первую очередь действие инсулина
касается именно обмена углеводов. Основное
влияние инсулина на углеводный обмен
связано с усилением транспорта глюкозы
через клеточные мембраны. Активация инсулинового
рецептора запускает внутриклеточный
механизм, который напрямую влияет на
поступление глюкозы в клетку путём регуляции
количества и работы мембранных белков,
переносящих глюкозу в клетку. В наибольшей
степени от инсулина зависит транспорт
глюкозы в двух типах тканей: мышечная
ткань (миоциты) и жировая ткань (адипоциты)
— это т.н. инсулинозависимые ткани. Составляя
вместе почти 2/3 всей клеточной массы человеческого
тела, они выполняют в организме такие
важные функции как движение, дыхание,
кровообращение и т. п., осуществляют запасание
выделенной из пищи энергии.

Подобно другим гормонам своё действие
инсулин осуществляет через белок-рецептор.
Инсулиновый рецептор представляет собой
сложный интегральный белок клеточной
мембраны, построенный из 2 субъединиц
(a и b), причём каждая из них образована
двумя полипептидными цепочками. Инсулин
с высокой специфичностью связывается
и распознаётся а-субъединицей рецептора,
которая при присоединении гормона изменяет
свою конформацию. Это приводит к появлению
тирозинкиназной активности у субъединицы
b, что запускает разветвлённую цепь реакций
по активации ферментов, которая начинается
с самофосфорилирования рецептора.

Весь комплекс биохимических последствий
взаимодействия инсулина и рецептора
ещё до конца не вполне ясен, однако известно,
что на промежуточном этапе происходит
образование вторичных посредников: диацилглицеролов
и инозитолтрифосфата, одним из эффектов
которых является активация фермента
— протеинкиназы С, с фосфорилирующим (и
активирующим) действием которой на ферменты
и связаны изменения во внутриклеточном
обмене веществ. Усиление поступления
глюкозы в клетку связано с активирующим
действием посредников инсулина на включение
в клеточную мембрану цитоплазматических
везикул, содержащих белок-переносчик
глюкозы GluT 4. Комплекс инсулин-рецептор
после образования погружается в цитозоль
и в дальнейшем разрушается в лизосомах.
Причём деградации подвергается лишь
остаток инсулина, а освобождённый рецептор
транспортируется обратно к мембране
и снова встраивается в неё.

Эффекты вызываемые инсулином

Физиологические
эффекты инсулина Инсулин оказывает
на обмен веществ и энергии сложное и многогранное
действие. Многие из эффектов инсулина
реализуются через его способность действовать
на активность ряда ферментов. Инсулин
— единственный гормон, снижающий содержание
глюкозы в крови, это реализуется через:

    • усиление поглощения клетками глюкозы
      и других веществ;
    • активацию ключевых ферментов гликолиза;
    • увеличение интенсивности синтеза гликогена
      — инсулин форсирует запасание глюкозы
      клетками печени и мышц путём полимеризации
      её в гликоген;
    • уменьшение интенсивности глюконеогенеза — снижается образование в печени глюкозы из различных веществ
Читайте также:  Трансплантация поджелудочной железы и почек

Анаболические
эффекты инсулина

    • усиливает поглощение клетками аминокислот
      (особенно лейцина и валина);
    • усиливает транспорт в клетку ионов калия,
      а также магния и фосфата;
    • усиливает репликацию ДНК и биосинтез
      белка;
    • усиливает синтез жирных кислот и последующую
      их этерификацию — в жировой ткани и в печени
      инсулин способствует превращению глюкозы
      в триглицериды; при недостатке инсулина происходит обратное — мобилизация жиров.

Антикатаболические
эффекты инсулина

    • подавляет гидролиз белков — уменьшает
      деградацию белков;
    • уменьшает липолиз — снижает поступление жирных кислот в кровь.

Регуляция уровня глюкозы в крови

Поддержание оптимальной концентрации
глюкозы в крови — результат действия множества
факторов, сочетание слаженной работы
почти всех систем организма. Однако главная
роль в поддержании динамического равновесия
между процессами образования и утилизации
глюкозы принадлежит гормональной регуляции.
В среднем уровень глюкозы в крови здорового
человека колеблется от 2,7 до 8,3 ммоль/л,
однако сразу после приёма пищи концентрация
резко возрастает на короткое время. Две
группы гормонов противоположно влияют
на концентрацию глюкозы в крови:

    • единственный гипогликемический гормон
      — инсулин
    • и гипергликемические гормоны (такие
      как глюкагон, гормон роста и адреналин),
      которые повышают содержание глюкозы
      в крови

Когда уровень глюкозы опускается ниже
нормального физиологического значения,
высвобождение инсулина из B-клеток замедляется
(но в норме никогда не останавливается).
Если же уровень глюкозы падает до опасного
уровня, высвобождаются так называемые
контринсулярные (гипергликемические)
гормоны (наиболее известный — глюкагон
α-клеток панкреатических островков),
которые вызывают высвобождение глюкозы
из клеточных запасов в кровь.

Адреналин и другие гормоны стресса сильно
подавляют выделение инсулина в кровь.
Точность и эффективность работы этого
сложного механизма является непременным
условием нормальной работы всего организма,
здоровья. Длительное повышенное содержание
глюкозы в крови (гипергликемия) является
главным симптомом и повреждающим фактором
сахарного диабета. Гипогликемия — понижение
содержания глюкозы в крови — часто имеет
ещё более серьёзные последствия. Так,
экстремальное падение уровня глюкозы
может быть чревато развитием гипогликемической
комы и смертью.

Заболевания, связанные с действием инсулина

Гипергликемия — увеличение уровня сахара
в крови. В состоянии гипергликемии увеличивается
поступление глюкозы как в печень, так
и в периферические ткани. Как только уровень
глюкозы зашкаливает, поджелудочная железа
начинает вырабатывать инсулин.

Гипогликемия — патологическое состояние,
характеризующееся снижением уровня глюкозы
периферической крови ниже нормы (обычно,
3,3 ммоль/л). Развивается вследствие передозировки
сахароснижающих препаратов, избыточной
секреции инсулина в организме. Гипогликемия
может привести к развитию гипогликемической
комы и привести к гибели человека.

Инсулинома — доброкачественная опухоль
из бета-клеток поджелудочной железы,
вырабатывающая избыточное количество
инсулина. Клиническая картина характеризуется
эпизодически возникающими гипогликемическими
состояниями.

Инсулиновый шок — симптомокомплекс
развивающийся при однократно введенной
избыточной дозе инсулина. Наиболее полное
описание можно встретить в учебниках
по психиатрии, так как инсулиновые шоки
применяли для лечения шизофрении.

Синдром хронической передозировки инсулина
(синдром Сомоджи) — симптомокомплекс,
развивающийся при длительном избыточном
введении препаратов инсулина.

Источник

Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Терапии

Реферат на тему:

«Действие гормонов поджелудочной железы и половых гормонов на почки»

Пенза 2010

План

1. Действие гормонов поджелудочной железы

2. Действие половых гормонов

Литература

1. Действие гормонов поджелудочной железы

Уже в первые годы применения инсулина была подмечена его способность снижать диурез при проведении пробы Фольгарда у больных. Это действие, напоминающее действие АДГ, отмечалось и позже. В эксперименте при внутривенном введении собакам инсулин (0,5—4 ЕД) оказывает двухфазное действие: в первом периоде наблюдается задержка выделения натрия, воды, фосфатов, а также глюкозы при нагрузке ею или при флоридзиновой глюкозурии за счет усиления реабсорбции этих веществ (Оганесян А. С., Демирчян А. А., 1963; Оганесян А. С., 1964). Резко снижается диуретическое и натрийуретическое действие строфантина, что А. С. Оганесян объясняет тем, что инсулин повышает активность мембранной АТФазы, участвующей в транспорте натрия, тогда как строфантин является ингибитором этого фермента. Строфантин угнетает реабсорбцию не только натрия, но и глюкозы, а инсулин снимает и этот эффект. Поскольку действие инсулина блокируется тиоловыми ядами, было сделано предположение, что рецептором инсулина на мембране является белок, содержащий тиоловые группы. У здоровых собак после первой фазы уменьшения диуреза и натрийуреза наступает противоположное действие с усилением фильтрации. Время выделения фенолового красного, сниженное после удаления поджелудочной железы, ускорялось после введения инсулина (Оганесян А. С., 1968). Автор связывает это с активирующим влиянием гормона на обмен веществ в канальцах. Прямое стимулирующее действие инсулина на активный транспорт натрия признаётся и зарубежными авторами. При капельном введении инсулина у людей наблюдается снижение экскреции натрия при неизменной клубочковой фильтрации и кровотоке. Авторы объясняют этот эффект усилением реабеорбции натрия в дистальном отделе, так как клиренс свободной воды возрастает.

В противоположность только что изложенным данным, признающим за инсулином прямое действие на почки, высказывалось мнение о его косвенном влиянии, которое реализуется через стимуляцию секреции АДГ. Так, например, антидиуретическое действие инсулина у людей снималось внутривенным введением этилового спирта, который по общепринятому мнению тормозит секрецию АДГ, а у больного с несахарным диабетом инсулин вообще не вызвал антидиуреза. Согласно наблюдениям Ф. С. Беликовой (1967), при аллоксановом диабете у собак резко снижается диурез после водной нагрузки, а введение инсулина восстанавливает его. Автор допускает, что инсулин снижает повышенный при экспериментальном диабете уровень АДГ в крови, в пользу чего говорит уменьшение транспорта «осмотически свободной» воды (Беликова Ф. С., 1971). Антидиуретическое действие инсулина при его введении в почечную артерию собак зависит от повышения транспорта натрия и отличается по механизму от действия АДГ. Более того, влияние АДГ на диурез после водной нагрузки снижается на фоне действия инсулина (Пронина Н. Н. и др., 1976).

Наряду с наблюдениями об уменьшении диуреза и выделения натрия имеются данные об усилении диуреза у крыс, кроликов и собак в первые часы после внутривенного введения инсулина. Наконец, представляют интерес результаты, полученные при введении инсулина собакам в большую цистерну мозга. В этом случае гипогликемический эффект был выражен сильнее; и наблюдалось снижение экскреции натрия и калия (Беликова Ф. С., Петросян А. Г., 1971). Диурез на фоне высокого уровня спонтанного мочеотделения (1 мл и более в минуту) снижался, а при низком уровне (0,2 мл в минуту) или же в опытах с водной нагрузкой не изменялся. Заметим, что в упомянутой работе при внутривенном введении инсулин на фоне высокого уровня диуреза тормозил его и снижал выделение натрия, а на фоне низкого уровня не оказывал влияния на эти показатели. Предварительное интерцисцернальное введение бета-блокатора анаприлина снимало антидиуретическое действие инсулина (Беликова Ф. С., 1974), что трактуется автором как показатель того, что инсулин через ликворную систему стимулирует секрецию АДГ при участии адренергических структур.

Читайте также:  Поджелудочная железа и расторопша применение

При введении инсулина в почечную артерию наблюдается одностороннее снижение диуреза, а также экскреция натрия и калия при неизменной фильтрации (Никитин А. И., 1971). Одновременно повышается максимальная секреция кардиотраста. Сходный эффект наблюдался и при внутривенном введении инсулина. Стимуляция секреторного транспорта подтверждена также на срезах коркового вещества почек кроликов. Накопление срезами кардиотраста достоверно повысилось как при предварительном введении инсулина кроликам, так и при добавлении его в инкубационную среду. Все это говорит за прямое влияние инсулина на транспортные процессы в почках.

Помимо инсулина, некоторым влиянием на функцию почек обладает и второй гормон поджелудочной железы — глюкагон, который продуцируется а-клетками и представляет собой полипептид, состоящий из 29 аминокислот. Глюкагон повышает уровень сахара в крови, в том числе за счет усиления гликогенолиза. Последнее связывают с активацией фосфорилазы за счет стимулирующего влияния на аденилатциклазу и усиленного образования цАМФ. Это сближает механизм действия глюкагона и адреналина. Глюкагон не только оказывает выраженное влияние на печень, но обладает, как выяснилось в последние годы, и кардиотоническим действием.

В первые годы, после того как был синтезирован глюкагон появились сообщения о его диуретическом и салурическом действии после введения людям. В противоположность инсулину глюкагон усиливал мочеотделение, выделение фосфата и бикарбоната без изменений фильтрации; усиливалась также экскреция натрия, калия, хлора. Повышенное выделение электролитов не связано с гипергликемией, так как если ее вызывали вливанием глюкозы, транспорт ионов не изменялся. Авторы предположили, что глюкагон действует непосредственно на канальцы. Согласно наблюдениям, подкожное введение людям 2 мг глюкагона сопровождается увеличением кровотока и фильтрации, а также диуреза, натрийуреза и в меньшей мере выделения калия, что было объяснено изменениями гемодинамики почек.

В экспериментальных исследованиях было подтверждено, что глюкагон усиливает диурез и особенно выделение натрия, калия и хлора у крыс при неизменной экскреции креатинина. При комбинации с ним кортизон активнее повышает диурез после водной нагрузки у гипофизэктомированных крыс. Что касается механизма действия, то при введении глюкагона в почечную артерию наблюдалось двустороннее повышение фильтрации, но различное в обеих почках выделение ионов, что указывало на прямое тормозящее действие в отношении реабсорбции воды, натрия, хлора, кальция и магния. В опытах с перфузией почки собаки кровью донора, получавшего глюкагон, также были получены данные в пользу прямого влияния на почку.

Кажется, вполне логичным предположить, что молекулярный механизм изложенного действия глюкагона связан в основном с его стимулирующим влиянием на активность аденилатциклазы не только в печени и сердце, но и в почках. Ранее уже отмечалось значение цАМФ в канальцевом транспорте натрия. Это не исключает участия гемодинамических изменений и, в частности, усиления фильтрации при резорбтивном влиянии глюкагона, на что указывают некоторые авторы.

2. Действие половых гормонов

Исходя из того, что половые гормоны имеют стероидную структуру и приближаются по строению к гормонам коры надпочечника, можно было думать об их выраженном (и, возможно, однотипном) влиянии на транспорт в почках воды и электролитов. Между тем, как мы увидим далее, такое предположение справедливо в основном лишь по отношению к женским половым гормонам, причем эффекты эстрогенов и гестагенов далеко не одинаковы. Что касается андрогенов, то их ренотропный эффект связан в основном с анаболическим действием. Рассмотрим влияние на почки различных групп половых гормонов.

Андрогены. Давно установленным фактом является стимулирующее влияние андрогенов на массу почек, которая резко снижается после кастрации. При введении тестостерона гипертрофируются клетки канальцевого эпителия за счет усиления биосинтеза белка. Механизм этого действия на молекулярном уровне изучен еще недостаточно. По данным японских авторов, активность Nа, К-активируемой АТФазы во фракции клеточных мембран коры почек у крыс самцов значительно выше, чем у самок. После кастрации активность фермента снижается до уровня, наблюдаемого у самок, а введение этим животным тестостерона вновь повышает ее. Тестостерон повышает активность фермента также в опытах in vitro. Авторы считают, что активация фермента ведет к усилению транспорта аминокислот и синтеза белка в канальцевом эпителии. Под влиянием тестостерона повышается активность и других ферментов в почках, в частности бета-глюкуронидазы, трансаминаз и др. Это свойство андрогенов является, вероятно, следствием повышенного синтеза ферментов, поскольку актиномицин В подавляет усиление активности ферментов в почках мышей, вызванное тестостероном. В связи с этим следует признать, что главным в механизме ренотропного действия андрогенов является их влияние на генетический аппарат клеток органов-мишеней, в том числе почек, где они стимулируют синтез РНК, их транспорт из ядра в цитоплазму и участие в синтезе белка (Сергеев П. В. и др., 1971).

Если перейти к влиянию андрогенов на мочеотделение, то приходится воспользоваться банальным замечанием, что имеющиеся по этому поводу данные немногочисленны и противоречивы. У людей под влиянием тестостерона отмечено снижение диуреза и выделения натрия. В опытах на крысах тестостерон оказывает диуретический эффект, у собак при курсовом введении им небольшой дозы (25 мг) наблюдается диуретическое действие, а однократное введение большой дозы (125 мг) несколько снижает мочеотделение. Уменьшение натрий- и калийуреза отмечено и при многодневном введении тестостерона собакам, хотя другие авторы не наблюдали при этом изменений экскреции натрия. Большинство исследователей не обнаружили изменений фильтрации и почечного кровотока под влиянием тестостерона.

Более четкое действие андрогены проявляют в отношении канальцевой секреции почек. В многочисленных исследованиях, проведенных на срезах почек, было показано, что: а) срезы почек крыс самцов накапливают секретируемые вещества значительно активнее, чем срезы почек самок; б) гонадэктомия снижает способность срезов почек самцов накапливать секретируемые вещества, но она постепенно восстанавливается при заместительной терапии тестостероном. Очень мало данных по этому вопросу получено в условиях целостного организма. При введении собакам тестостерона наблюдалось постепенное усиление секреции диодраста, хотя другие авторы считают этот эффект мало выраженным. У мужчин, получавших тестостерон в течение 2—3 недель, не отмечено изменений канальцевой секреции.

Г. И. Галютева (1974) показала, что экскреция кардиотраста у крыс самцов достоверно выше, чем у самок, что подтверждает данные, полученные при исследовании срезов почек некоторыми авторами. У гонадэктомированных крыс максимальное снижение секреции наблюдали на 3-й неделе. Диурез и экскреция креатинина после кастрации не изменялись. Кроме того, было изучено влияние тестостерона на секрецию кардиотраста у крыс самок. Показаны средние данные опытов, поставленных на 13 животных, получавших тестостерон (50 мг/кг) в течение 4 дней. При этом секреция кардиотраста нарастала начиная со второго дня. Наблюдалось также небольшое усиление диуреза. В параллельной серии опытов 15 крысам одновременно с тестостероном вводили аурантин. В этом случае усиления секреции не наблюдалось. На диурез аурантин влияния не оказал.

Читайте также:  Поджелудочная железа болезни смерть

Учитывая механизм действия аурантина, можно заключить, что усиление канальцевой секреции под влиянием тестостерона связано с активацией синтеза РНК, что соответствует приведенным выше данным литературы о влиянии этого гормона на генетический аппарат. В дальнейшем Г. И. Галютева (1974) впервые показала, что параллельно с усилением секреции тестостерон повышает и максимальную реабсорбцию глюкозы у самок кроликов. Это согласуется с давно установленным половым различием в максимальной реабсорбции глюкозы у людей.

Ближайшими к андрогенам по химическому строению и биологическому действию являются так называемые анаболические стероиды, нашедшие широкое применение в практике. В настоящее время нет четких данных о влиянии этой группы веществ на мочеотделение. Клубочковая фильтрация при длительном назначении анаболического стероидного вещества увеличивалась у мужчин в старческом возрасте, но не у женщин. Авторы считают это результатом заместительной терапии, так как у пожилых мужчин секреция андрогенов снижена, а анаболические стероиды сохраняют некоторые андрогенные свойства. В нашей лаборатории было показано, что метиландростендиол повышает секреторный транспорт кардиотраста у кроликов и собак (Фоменко Г. Ф., 1969). Поскольку в этих опытах могло сказаться некоторое усиление фильтрации, автор проверил этот эффект в опытах на срезах коркового вещества почек кроликов. Метиландростендиол вводили 14 дней по 1,5 мг/кг. Почки брали через неделю после окончания курса введения, когда в опытах in vivo повышение секреции было наиболее заметным. Накопление кардиотраста после введения анаболического стероида достоверно повышалось, что согласуется с наблюдениями об усилении канальцевой секреции под влиянием подобных препаратов у людей.

Эстрогены. Влияние эстрогенов на мочеотделение было замечено еще в исследованиях 30-х годов. При подкожном введении собакам 5 мг эстрадиола снижалось суточное выделение натрия и воды. Эстрон в опытах на мышах после водной нагрузки резко тормозил диурез. Способностью эстрогенов задерживать натрий, отмеченной также у людей, объясняли появление отеков у женщин в предменструальный период и во время беременности. При введении людям по 10 мг эстрадиола в течение 7— 10 дней снижение экскреции натрия и воды в первые дни сопровождалось небольшим повышением объема внеклеточной жидкости.

Механизм действия эстрогенов на транспорт натрия в почках изучен еще недостаточно. Было высказано предположение, что он связан с найденным некоторыми авторами повышением активности системы ренин —ангиотензин— альдостерон под влиянием эстрогенов. Действительно, при приеме контрацептивов у женщин может повыситься содержание ренина, альдостерона, а также ангиотензиногена в крови, что соответствует данным об усилении у крыс синтеза ангиотензиногена при введении им диэтилстильбэстрола, но не прогестерона. Повышение содержания ангиотензиногена в плазме у крыс отмечается и при внутривенном введении этинилэстрадиола.

В ряде работ, однако, приводятся данные против участия альдостерона в действии эстрогенов на почку. Было показано, что эстрадиол и активный продукт его метаболизма эстриол задерживают натрийурез у собак на фоне избыточного введения дезоксикортикостерона ацетата (ДОКСА), когда увеличение уровня эндогенных минералокортикоидов вряд ли могло иметь значение. Кроме того, введение экстрадиола внутрь в течение 8 дней вызывало натрийзадерживающий эффект у адреналэктомированных собак, получавших заместительную терапию ДОКСА и кортизоном. Наконец, уменьшая выделение натрия, эстрадиол и эстриол не оказывали влияния на калийурез, Следовательно, действие эстрогенов не связано с усилением секреции минералокортикоидов. Действительно, при длительном введении эстрадиола кроликам продукция альдостерона мало менялась, а содержание ренина в почках значительно нарастало (Колпакова Л. А. и др., 1968).

На основании химического сходства эстрогенов и минералокортикоидов можно было думать об их действии на общие рецепторы в канальцевом эпителии. Однако этому противоречит способность эстрогенов задерживать натрий и в тех случаях, когда наступает «феномен ускользания» почек от антинатрийуретического действия минералокортикоидов. В последние годы получены данные в пользу наличия специфических для эстрогенов рецепторов в почках. Воздействуя на них, эстрогены могут вызывать изменения активности некоторых ферментов в почках за счет влияния на их биосинтез.

Гестагены. Диуретическое действие прогестерона было отмечено еще Selye в опытах на интактных и гипофизэктомированных крысах. Впоследствии, исходя из представления, что прогестерон может конкурентно тормозить действие минералокортикоидов, его с успехом применили у больных с циррозом печени и асцитом и при отеках развившихся в результате заболевания сердца. Авторы отметили при этом снижение явлений вторичного гиперальдостеронизма, усиление диуретического и натрийуретического действия ртутных и тиазидовых диуретиков. Вызываемый тиазидами калийурез значительно уменьшался, что вело к нарастанию отношения натрий/калий в моче.

Некоторые клиницисты (Мерзон А. К., Коновалова Т. М., 1968) отмечают, что лечение отеков одним прогестероном малоэффективно, но при комбинации с диуретиками эффект последних возрастает (в том числе при наличии рефрактерности к ним), особенно в первые дни применения прогестерона. В дальнейшем влияние прогестерона снижается, возможно, за счет усиленного образования альдостерона. В связи с этим в отличие от спиролактонов прогестерон следует применять короткими курсами. М. А. Ясиновский и др. (1965) отметили, что эффект прогестерона более заметен у женщин по сравнению с мужчинами.

Экспериментальные исследования подтверждают антиальдостероновое действие прогестерона. У адренал-эктомированных крыс прогестерон тормозил действие ДОКСА на экскрецию натрия и калия. В опытах с применением метода stop flow показано, что прогестерон и спиронолактон оказывают сходный натрийуретический эффект, действуя на дистальные отделы канальцев. При изучении транспорта натрия через стенку мочевого пузыря амфибий было показано, что прогестерон, как и спиронолактон, подавляет стимулирующее действие альдостерона на перенос натрия.

Интересно, что на фоне эстрогенов натрийуретическое действие прогестерона снижается, что, как нам кажется, может иметь клиническое значение. Так, после введения внутрь крысам эстриола в течение 5 дней прогестерон снизил натрийурез за счет усиления реабсорбции натрия, При этом повысилась его концентрация в сосочковом слое почек (Радев А. И., 1973). Поскольку прогестерон — химический предшественник альдостерона, автор допускает, что эстриол стимулирует его превращение в минералокортикоиды.

ЛИТЕРАТУРА

1) Фармакология почек и ее физиологические основы Е.Б. Берхин. – М.: Медицина,1979.

2) Физиология почек А. Вандер Санкт-Петербург, 2000.

Источник