Гормоны поджелудочной железы инсулин и глюкагон регулируют обмен

Гормонами поджелудочной железы являются инсулин и глюкагон.

Глюкагон

Строение

Представляет собой полипептид, включающий 29 аминокислот с молекулярной массой 3,5 кДа и периодом полураспада 3-6 мин.

Синтез

Осуществляется в клетках поджелудочной железы и в клетках тонкого кишечника.

Регуляция синтеза и секреции

Активируют: гипогликемия, адреналин.
Уменьшают: глюкоза, жирные кислоты.

Механизм действия

Аденилатциклазный активирующий.

Мишени и эффекты

Конечным эффектом является повышение концентрации глюкозы и жирных кислот в крови.

Жировая ткань

  • повышает активность внутриклеточной гормон-чувствительной ТАГ-липазы и, соответственно, стимулирует липолиз.

Печень

  • активация глюконеогенеза и гликогенолиза,
  • за счет повышенного поступления жирных кислот из жировой ткани усиливает кетогенез.

Патология

Гиперфункция

Глюкагонома – редко встречающееся новообразование из группы нейроэндокринных опухолей. У больных отмечается гипергликемия и поражение кожи и слизистых оболочек.

Инсулин

Дополнительная, более подробная информация, об инсулине находится на следующей странице.

Строение

Представляет собой полипептид из 51 аминокислоты, массой 5,7 кД, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками.

Синтез

Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.

Регуляция синтеза и секреции

Активируют синтез и секрецию:

  • глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,
  • жирные кислоты и аминокислоты,
  • влияния n.vagus – находится под контролем гипоталамуса, активность которого определяется концентрацией глюкозы крови,
  • гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ингибирующий полипептид,
  • хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.

Уменьшают: влияние симпато-адреналовой системы.

Механизм действия

Осуществляется через  рецепторы с тирозинкиназной активностью (подробно).

Мишени и эффекты

Основным эффектом является снижение концентрации глюкозы в крови благодаря усилению транспорта глюкозы внутрь миоцитов и адипоцитов и  активации внутриклеточных реакций утилизации глюкозы:

  • активируя фосфодиэстеразу, которая разрушает вторичный мессенджер цАМФ, инсулин прерывает эффекты адреналина и глюкагона на печень и жировую ткань. 
  • в мышцах и жировой ткани стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • в печени и мышцах ускоряет синтез гликогена (активация гликогенсинтазы).
  • в печени, мышцах и адипоцитах инсулин стимулирует гликолиз, активируя фосфофруктокиназу и пируваткиназу.
  • полученный в гликолизе пируват превращается в ацетил-SКоА под влиянием активированного инсулином пируватдегидрогеназного комплекса, и далее используется для синтеза жирных кислот. Превращение ацетил-SКоА в малонил-SКоА, первый субстрат синтеза жирных кислот, также стимулируется инсулином (ацетил-SКоА-карбоксилаза).
  • в мышцах усиливает транспорт нейтральных аминокислот в миоциты и стимулирует трансляцию (рибосомальный синтез белков).

Ряд эффектов инсулина заключается в изменении транскрипции генов и скорости трансляции ферментов, отвечающих за обмен веществ, за рост и деление клеток. 

Благодаря этому индуцируется синтез ферментов метаболизма

  • углеводов в печени (глюкокиназа, пируваткиназа, глюкозо-6-фосфатдегидрогеназа),
  • липидов в печени (АТФ-цитрат-лиаза, ацетил-SКоА-карбоксилаза, синтаза жирных кислот, цитозольная малатдегидрогеназа) и адипоцитах (ГАФ-дегидрогеназа, пальмитатсинтаза, липопротеинлипаза).

и происходит репрессия фосфоенолпируват-карбоксикиназы (подавление глюконеогенеза).

Инактивация инсулина 

Инактивация инсулина начинается после интернализации инсулин-рецепторного комплекса и образования эндосомы, в которой и происходит деградация инсулина.  Участвуют две ферментные системы:

  1. Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями А и В, в результате чего гормон распадается.
  2. Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот. 

Период полужизни инсулина не превышает 5-6 минут.  Происходит деградация в основном в печени и почках, но и другие ткани принимают в этом участие. Также в почках инсулин может фильтроваться, захватываться эпителиоцитами проксимальных канальцев и разрушаться до аминокислот.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Источник

Глюкагон и инсулин – гормоны поджелудочной железы. Функция всех гормонов – регуляция обмена веществ в организме. Основная функция инсулина и глюкагона – обеспечение организма энергетическими субстратами после еды и в период голодания. После еды необходимо обеспечить поступление глюкозы в клетки и запасание ее излишков. В период голодания – извлечь глюкозу из резервов (гликогена) или синтезировать ее или другие энергетические субстраты.

Распространено мнение, что инсулин и глюкагон расщепляют углеводы. Это неверно. Обеспечивают расщепление веществ ферменты. Гормоны же регулируют эти процессы.

Синтез глюкагона и инсулина

Гормоны производятся в железах внутренней секреции. Инсулин и глюкагон — в поджелудочной железе: инсулин в β-клетках, глюкагон – в α-клетках островков Лангерганса. Оба гормона имеют белковую природу и синтезируются из предшественников. Инсулин и глюкагон выделяются в противоположных состояниях: инсулин при гипергликемии, глюкагон – при гипогликемии. Полупериод жизни инсулина — 3-4 минуты, его постоянная варьирующая секреция обеспечивает поддержание уровня глюкозы в крови в узких пределах.

Инсулин-глюкагон

Эффекты инсулина

Инсулин регулирует обмен веществ, прежде всего – концентрацию глюкозы. Он влияет на мембранные и внутриклеточные процессы.

Мембранные эффекты инсулина:

  • стимулирует транспорт глюкозы и ряда других моносахаридов,
  • стимулирует транспорт аминокислот (главным образом аргинина),
  • стимулирует транспорт жирных кислот,
  • стимулирует поглощение клеткой ионов калия и магния.

Инсулин оказывает внутриклеточные эффекты:

  • стимулирует синтез ДНК и РНК,
  • стимулирует синтез белков,
  • усиливает стимуляцию фермента гликогенсинтазы (обеспечивает синтез гликогена из глюкозы – гликогенез),
  • стимулирует глюкокиназу (фермент способствующий превращению глюкозы в гликоген в условиях ее избытка),
  • ингибирует глюкозо-6-фосфатазу (фермент, катализирующий превращение глюкозо-6-фосфата в свободную глюкозу и, соответственно, повышающий уровень сахара в крови),
  • стимулирует липогенез,
  • ингибирует липолиз (за счет торможения синтеза цАМФ),
  • стимулирует синтез жирных кислот,
  • активирует Na+/K+-АТФ-азу.
Читайте также:  Больные после операции на поджелудочной железе

Действия инсулина

Роль инсулина в транспорте глюкозы в клетки

Глюкоза попадает в клетки с помощью специальных белков-транспортеров (GLUT). В разных клетках локализуются многочисленные GLUT. В мембранах клеток скелетных и сердечных мышц, жировой ткани, лейкоцитов, коркового слоя почек работают инсулинзависимые транспортеры – GLUT4. Транспортеры инсулина в мембранах клеток ЦНС, печени нсулиннезависимы, поэтому обеспечение клеток этих тканей глюкозой зависит только от ее концентрации в крови. В клетки почек, кишечника, эритроцитов глюкоза попадает вообще без переносчиков, путем пассивной диффузии. Таким образом, инсулин необходим для попадания глюкозы в клетки жировой ткани, скелетных мышц и сердечных мышц. При недостатке инсулина в клетки этих тканей попадет лишь небольшое количество глюкозы, недостаточное для обеспечения их метаболических потребностей, даже в условиях высокой концентрации глюкозы в крови (гипергликемии).

Роль инсулина в обмене глюкозы

Инсулин стимулирует утилизацию глюкозы, включая несколько механизмов.

  1. Повышает активность гликогенсинтазы в клетках печени, стимулируя синтез гликогена из остатков глюкозы.
  2. Повышает активность глюкокиназы в печени, стимулируя фосфорилирование глюкозы с образованием глюкозо-6-фосфата, который «запирает» глюкозу в клетке, т. к. не способен проходить через мембрану из клетки в межклеточное пространство.
  3. Ингибирует фосфатазу печени, катализирующую обратное превращение глюкозо-6-фосфата в свободную глюкозу.

Все перечисленные процессы обеспечивают поглощение глюкозы клетками периферических тканей и снижение ее синтеза, что приводит к снижению концентрации глюкозы в крови. Кроме того, усиление утилизации глюкозы клетками сохраняет запасы других внутриклеточных энергетических субстратов – жиров и белков.

Фосфорилирование глюкозы

Роль инсулина в обмене белков

Инсулин стимулирует как транспорт свободных аминокислот в клетки, так и синтез белка в них. Синтез белка стимулируется двумя путями:

  • за счет активации мРНК,
  • за счет увеличения поступления аминокислот в клетку.

Кроме того, как было сказано выше, усиление использования клеткой глюкозы в качестве энергетического субстрата, замедляет распад в ней белка, что приводит к увеличению белковых запасов. За счет такого эффекта инсулин участвует в регуляции процессов развития и роста организма.

Молекула инсулина

Роль инсулина в жировом обмене

Мембранные и внутриклеточные эффекты инсулина приводят к увеличению запасов жира в жировой ткани и печени.

  1. Инсулин обеспечивает проникновение глюкозы в клетки жировой ткани и стимулирует ее окисление в них.
  2. Стимулирует образование липопротеиновой липазы в эндотелиальных клетках. Этот вид липазы ферментирует гидролиз триацилглицеролов, связанных с липопротеинами крови, и обеспечивает поступление полученных жирных кислот в клетки жировой ткани.
  3. Ингибирует внутриклеточную липопротеиновую липазу, таким образом, тормозя липолиз в клетках.

Функции глюкагона

Глюкагон оказывает влияние на углеводный, белковый и жировой обмен. Можно сказать, что глюкагон – антагонист инсулина по оказываемым эффектам. Главным результатом работы глюкагона является повышение концентрации глюкозы в крови. Именно глюкагон обеспечивает поддержание необходимого уровня энергетических субстратов — глюкозы, белков и жиров в крови в период голодания.

1. Роль глюкагона в обмене углеводов.

Обеспечивает синтез глюкозы путем:

  • усиления гликогенолиза (расщепления гликогена до глюкозы) в печени,
  • усиления глюконеогенеза (синтеза глюкозы из неуглеводистых предшественников) в печени.

2. Роль глюкагона в обмене белков.

Гормон стимулирует транспорт глюкагонных аминокислот в печень, что способствует в клетках печени:

  • синтезу белков,
  • синтезу глюкозы из аминокислот – глюконеогенезу.

3. Роль глюкагона в жировом обмене.

Гормон активирует в жировой ткани липазу, в результате в крови повышается уровень жирных кислот и глицерина. Это в конечном итоге опять же приводит к повышению концентрации глюкозы в крови:

  • глицерин как неуглеводистый предшественник включается в процесс глюконеогенеза – синтез глюкозы;
  • жирные кислоты превращаются в кетоновые тела, которые используются в качестве энергетических субстратов, что сохраняет запасы глюкозы.

Взаимосвязь гормонов

Инсулин и глюкагон неразрывно связаны между собой. Их задача – регулировать концентрацию глюкозы в крови. Глюкагон обеспечивает ее повышение, инсулин – понижение. Они выполняют противоположную работу. Стимулом выработки инсулина является повышение концентрации глюкозы в крови, глюкагона – понижение. Кроме того, выработка инсулина тормозит секрецию глюкагона.

Баланс гормонов

Если нарушается синтез одного из этих гормонов, другой начинает работать некорректно. Например, при сахарном диабете уровень инсулина в крови низкий, ингибиторное действие инсулина на глюкагон ослаблено, в результате уровень глюкагона в крове слишком высокий, что приводит к постоянному повышению уровня глюкозы в крови, чем и характеризуется данная патология.

Кусочки сахара

К неправильной выработке гормонов, некорректному их соотношению приводят погрешности в питании. Злоупотребление белковой пищей стимулирует избыточное выделение глюкагона, простыми углеводами – инсулина. Появление дисбаланса в уровне инсулина и глюкагона приводят к развитию патологий.

Источник

Инсулин
относится к гормонам белковой природы.
Он синтезируется b-клетками поджелудочной
железы. Инсулин является одним из
важнейших анаболических гормонов.
Связывание инсулина с клетками-мишенями
приводит к процессам, которые увеличивают
скорость синтеза белка, а также накопление
в клетках гликогена и липидов, являющихся
резервом пластического и энергетического
материала. Инсулин, возможно за счет
своего анаболического эффекта,
стимулирует рост и размножение клеток.
Молекула инсулина состоит из двух
полипептидных цепей — А-цепи и В-цепи.
В состав А-цепи входит 21 аминокислотный
остаток, в состав В-цепи — 30. Эти цепи
связаны между собой двумя дисульфидными
мостиками: один между А7 и В7 ( номера
аминокислот,

Читайте также:  Резекция поджелудочной железы осложнения

считая
с N-концов полипептидных цепей ), второй
между А20 и В19. Третий дисульфидный
мостик находится в цепи А, связывая А6
и А11. Главным физиологическим стимулом
выделения инсулина из b-клеток в кровь
является повышение содержания глюкозы
в крови. Влияние инсулина на обмен
углеводов можно охарактеризовать

следующими
эффектами:

1.Инсулин
увеличивает проницаемость клеточных
мембран для глюкозы в так называемых
инсулин-зависимых тканях.

2.Инсулин
активирует окислительный распад
глюкозы в клетках.

3.Инсулин
ингибирует распад гликогена и активирует
его син тез в гепатоцитах.

4.Инсулин
стимулирует превращение глюкозы в
резервные триглицериды.

5.Инсулин
ингибирует глюконеогенез, снижая
активность некоторых ферментов
глюконеогенеза.

Влияние
инсулина на обмен липидов складывается
из ингибирования липолиза в липоцитах
за счет дефосфорилирования
триацилглицероллипазы и стимуляции
липогенеза.

Инсулин
оказывает анаболическое действие на
обмен белков: он стимулирует поступление
аминокислот в клетки, стимулирует
транскрипцию многих генов и стимулирует,
соответственно, синтез многих белков,
как внутриклеточных, так и внеклеточных.

ГЛЮКАГОН

Глюкагон
представляет собой гормон полипептидной
природы, выделяемый a-клетками
поджелудочной железы. Основной
функцией этого гормона является
поддержание энергетического гомеостаза
организма за счет мобилизации эндогенных
энергетических рессурсов, этим
объясняется его суммарный катаболический
эффект.

В
состав полипептидной цепи глюкагона
входит 29 аминокислотных остатков,
его молекулярная масса 4200, в его составе
от сутствует цистеин. Глюкагон был
синтезирован химическим путем, чем
была окончательно подтверждена его
химическая структура.

Основным
местом синтеза глюкагона являются
a-клетки поджелудочной железы, однако
довольно большие количества этого
гормона образуются и в других органах
желудочно-кишечного тракта. Синтезируется
глюкагон на рибосомах a-клеток в виде
более длин ного предшественника с
молекулярной массой около 9000. В ходе
процессинга происходит существенное
укорочение полипептидной цепи,после
чего глюкагон секретируется в кровь.
В крови он находится в свободной форме,
его концентрация в сыворотке крови
составляет 20-100 нг/л. Период его полужизни
равняется примерно 5 минутам. Основная
часть глюкагона инактивируется в
печени путем гидролитического отщепления
2 аминокислотных остатков с N-конца
молекулы. Секреция глюкагона
a-клетками поджелудочной железы
тормозится высоким уровнем глюкозы в
крови, а также соматостатином, выделяемым
D-клетками поджелудочной железы.
Возможно, что секреция глюкагона
ингибируется также инсулином или ИФР-1.
Стимулируется секреция понижением
концентрации глюкозы в крови, однако
механизм этого эффекта неясен. Кроме
того, секрецию глюкагона стимулируют
соматотропный гормон гипофиза, аргинин
и Са2+.

Механизм
действия глюкагона достаточно хорошо
изучен. Ре цепторы для гормона
локализованы в наружной клеточной
мембране. Образование гормонрецепторных
комплексов сопровождается активацией
аденилатциклазы и увеличением в клетках
концентрации цАМФ, сопровождающимся
активацией протеинкиназы и
фосфорилированием

белков
с изменением функциональной активности
последних. Под действием глюкагона
в гепатоцитах ускоряется мобилизация
гликогена с выходом глюкозы в кровь.
Этот эффект гормона обусловлен активацией
гликогенфосфорилазы и ингибированием
гликогенсинтетазы в результате их
фосфорилирования. Следует заметить,
что глюкагон, в отличие от адреналина,
не оказывает влияния на скорость
гликогенолиза в мышцах.

Глюкагон
стимулирует липолиз в липоцитах,
увеличивая тем самым поступление в
кровь глицерола и высших жирных кислот.
В печени гормон тормозит синтез жирных
кислот и холестерола из ацетил-КоА, а
накапливающийся ацетил-КоА используется
для синтезаацетоновых тел. Таким
образом, глюкагон стимулирует кетогенез.

В
почках глюкагон увеличивает клубочковую
фильтрацию, по-видимому, этим объясняется
наблюдаемое после введения глюкагона
повышение экскреции ионов натрия,
хлора, калия , фосфора и мочевой
44444кислоты.

Соседние файлы в папке 1-30

  • #
  • #
  • #
  • #
  • #
  • #

Источник

функции
поджелудочной железы

Поджелудочная
железа – железа со смешанной функцией.
Морфологической

единицей
железы служат островки Лангерганса,
преимущественно они

расположены
в хвосте железы. Бета-клетки островков
вырабатывают инсулин,

альфа-клетки
– глюкагон, дельта-клетки – соматостатин.
В экстрактах ткани

поджелудочной
железы обнаружены гормоны ваготонин и
центропнеин.

Инсулин
регулирует
углеводный обмен, снижает концентрацию
сахара в крови,

способствует
превращению глюкозы в гликоген в печени
и мышцах. Он повышает

проницаемость
клеточных мембран для глюкозы: попадая
внутрь клетки, глюкоза

усваивается.
Инсулин задерживает распад белков и
превращение их в глюкозу,

стимулирует
синтез белка из аминокислот и их активный
транспорт в клетку,

регулирует
жировой обмен путем образования высших
жирных кислот из продуктов

углеводного
обмена, тормозит мобилизацию жира из
жировой ткани.

В
бета-клетках инсулин образуется из
своего предшественника проинсулина.
Он

переносится
в клеточные аппарат Гольджи, где
происходят начальные стадии

превращения
проинсулина в инсулин.

В
основе регуляции инсулина лежит
нормальное содержание глюкозы в крови:

гипергликемия
приводит к увеличению поступления
инсулина в кровь, и наоборот.

Паравентрикулярные
ядра гипоталамуса повышают активность
при

гипергликемии,
возбуждение идет в продолговатый мозг,
оттуда в ганглии

поджелудочной
железы и к бета-клеткам, что усиливает
образование инсулина и

Читайте также:  Грейпфрут при поджелудочной железе

его
секрецию. При гипогликемии ядра
гипоталамуса снижают свою активность,
и

секреция
инсулина уменьшается.

Гипергликемия
непосредственно приводит в возбуждение
рецепторный аппарат

островков
Лангерганса, что увеличивает секрецию
инсулина. Глюкоза также

непосредственно
действует на бета-клетки, что ведет к
высвобождению инсулина.

Глюкагон
повышает
___________количество глюкозы, что также
ведет к усилению

продукции
инсулина. Аналогично действует гормоны
надпочечников.

Вегетативная
нервная система регулирует выработку
инсулина посредством

блуждающего
и симпатического нервов. Блуждающий
нерв стимулирует выделение

инсулина,
а симпатический тормозит.

Количество
инсулина в крови определяется активностью
фермента инсулиназы,

который
разрушает гормон. Наибольшее количество
фермента находится в печени__и
мышцах. При однократном протекании
крови через печень разрушается до 50 %

находящегося
в крови инсулина.

Важную
роль в регуляции секреции инсулина
выполняет гормон соматостатин,

который
образуется в ядрах гипоталамуса и
дельта-клетках поджелудочной

железы.
Соматостатин тормозит секрецию инсулина.

Активность
инсулина выражается в лабораторных и
клинических единицах.

Глюкагон
принимает участие в регуляции углеводного
обмена, по действию на

обмен
углеводов он является антагонистом
инсулина. Глюкагон расщепляет

гликоген
в печени до глюкозы, концентрация глюкозы
в крови повышается.

Глюкагон
стимулирует расщепление жиров в жировой
ткани.

Механизм
действия глюкагона обусловлен его
взаимодействием с особыми

специфическими
рецепторами, которые находятся на
клеточной мембране. При

связи
глюкагона с ними увеличивается активность
фермента аденилатциклазы и

концентрации
цАМФ, цАМФ способствует процессу
гликогенолиза.

Регуляция
секреции глюкагона. На образование
глюкагона в альфа-клетках

оказывает
влияние уровень глюкозы в крови. При
повышении глюкозы в крови

происходит
торможение секреции глюкагона, при
понижении – увеличение. На

образование
глюкагона оказывает влияние и передняя
доля гипофиза.

Гормон
роста соматотропин
повышает
активность альфа-клеток. В

противоположность
этому гормон дельта-клетки – соматостатин
тормозит

образование
и секрецию глюкагона, так как он блокирует
вхождение в альфа-

клетки
ионов Ca, которые необходимы для образования
и секреции глюкагона.

Физиологическое
значение липокаина.
Он способствует утилизации жиров за

счет
стимуляции образования липидов и
окисления жирных кислот в печени, он

предотвращает
жировое перерождение печени.

Функции
ваготонина

повышение тонуса блуждающих нервов,
усиление их

активности.

Функции
центропнеина

возбуждение дыхательного центра,
содействие

расслаблению
гладкой мускулатуры бронхов, повышение
способности гемоглобина

связывать
кислород, улучшение транспорта кислорода.

Нарушение
функции поджелудочной железы.

Уменьшение
секреции инсулина приводит к развитию
сахарного диабета,

основными
симптомами которого являются гипергликемия,
глюкозурия, полиурия

(до
10 л в сутки), полифагия (усиленный
аппетит), полидиспепсия (повышенная

жажда).

Увеличение
сахара в крови у больных сахарным
диабетом является результатом

потери
способности печени синтезировать
гликоген из глюкозы, а клеток –

утилизировать
глюкозу. В мышцах также замедляется
процесс образования и

отложения
гликогена.

У
больных сахарным диабетом нарушаются
все виды обмена.

6.
Гормоны надпочечников.
Глюкокортикоиды
__Надпочечники
– парные
железы, расположенные над верхними
полюсами

почек.
Они имеют важное жизненное значение.
Различают два типа гормонов:

гормоны
коркового слоя и гормоны мозгового
слоя.

Гормоны
коркового слоя длятся на три группы:

1)
глюкокортикоиды
(гидрокортизон, кортизон, кортикостерон)
;

2)
минералокортикоиды
(альдестерон, дезоксикортикостерон)
;

3)
половые
гормоны (андрогены, эстрогены, прогестерон)
.

Глюкокортикоиды
синтезируются в пучковой зоне коры
надпочечников. По

химическому
строению гормоны являются стероидами,
образуются из холестерина,

для
синтеза необходима аскорбиновая кислота.

Физиологическое
значение глюкокортикоидов.

Глюкокортикоиды
влияют на обмен углеводов, белков и
жиров, усиливают

процесс
образования глюкозы из белков, повышают
отложение гликогена в печени,

по
своему действию являются антагонистами
инсулина.

Глюкокортикоиды
оказывают катаболическое влияние на
белковый обмен,

вызывают
распад тканевого белка и задерживают
включение аминокислот в белки.

Гормоны
обладают противовоспалительным
действием, что обусловлено

снижением
проницаемости стенок сосуда при низкой
активности фермента

гиалуронидазы.
Уменьшение воспаления обусловлено
торможением освобождения

арахидоновой
кислоты из фосфолипидов. Это ведет к
ограничению синтеза

простагландинов,
которые стимулируют воспалительный
процесс.

Глюкокортикоиды
оказывают влияние на выработку защитных
антител:

гидрокортизон
подавляет синтез антител, тормозит
реакцию взаимодействия

антитела
с антигеном.

Глюкокортикоиды
оказывают выраженное влияние на
кроветворные органы:

1)
увеличивают количество эритроцитов за
счет стимуляции красного костного

мозга;

2)
приводят к обратному развитию вилочковой
железы и лимфоидной ткани, что

сопровождается
уменьшением количества лимфоцитов.

Выделение
из организма осуществляется двумя
путями:

1)
75–90 % поступивших гормонов в кровь
удаляется с мочой;

2)
10–25 % удаляется с калом и желчью.

Регуляция
образования глюкокортикоидов.

Важную
роль в образовании глюкокортикоидов
играет кортикотропин передней

доли
гипофиза. Это влияние осуществляется
по принципу прямых и обратных

связей:
кортикотропин повышает продукцию
глюкокортикоидов, а избыточное их

содержание
в крови приводит к торможению кортикотропина
в гипофизе.

В
ядрах переднего отдела гипоталамуса
синтезируется

нейросекрет
кортиколиберин,
который стимулирует образование
кортикотропина

в
передней доле гипофиза, а он, в свою
очередь, стимулирует образование

глюкокортикоида.
Функциональное отношение «гипоталамус
– передняя доля__гипофиза – кора
надпочечников» находится в единой
гипоталамо-гипофизарно-

надпочечниковой
системе, которая играет ведущую роль в
адаптационных

реакциях
организма.

Адреналин

гормон мозгового вещества надпочечников
– усиливает

образование
глюкокортикоидов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #

    14.02.201524.91 Mб29Эндодонтия.djvu

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник