Какие ферменты поджелудочной железы активирует трипсин

В
поджелудочной железе синтезируются
проферменты ряда протеаз: трипсиноген,
химотрипсиноген, проэластаза,
прокарбоксипептидазы А и В. В кишечнике
они путём частичного протеолиза
превращаются в активные ферменты
трипсин, химотрипсин, эластазу и
карбок-сипептидазы А и В.

Активация
трипсиногена 
происходит
под действием фермента эпителия
кишечника энтеропептидазы.

464

Этот
фермент отщепляет с N-конца молекулы
трипсиногена гексапептид Вал-(Асп)4-Лиз.
Изменение конформации оставшейся части
полипептидной цепи приводит к формированию
активного центра, и образуется активный
трипсин. Последовательность Вал-(Асп)4-Лиз
присуща большинству известных
трипсиноге-нов разных организмов — от
рыб до человека.

Образовавшийся
трипсин активирует
химотрипсиноген, 
из
которого получается несколько активных
ферментов (рис. 9-3). Химотрипсиноген
состоит из одной полипептидной цепи,
содержащей 245 аминокислотных остатков
и пяти дисульфидных мостиков. Под
действием трипсина расщепляется
пептидная связь между 15-й и 16-й
аминокислотами, в результате чего
образуется активный π-химотрипсин.
Затем под действием π-химотрипсина
отщепляется дипептид сер(14)-арг(15), что
приводит к образованию δ-химотрипсина.
Отщепление дипептида тре(147)-арг(148)
завершает образование стабильной формы
активного фермента — α-химотрипсина,
который состоит из трёх полипептидных
цепей, соединённых дисульфидными
мостиками.

Остальные
проферменты панкреатических протеаз
(проэластаза и прокарбоксипептидазы
А и В) также активируются трипсином
путём частичного протеолиза. В результате
образуются активные ферменты — эластаза
и карбокси-пептидазы А и В.

2. Специфичность действия протеаз

Трипсин
преимущественно гидролизует пептидные
связи, образованные карбоксильными
группами аргинина и лизина. Химотрипсины
наиболее активны в отношении пептидных
связей, образованных карбоксильными
группами ароматических аминокислот
(Фен, Тир, Три).

Карбоксипептидазы
А и В — цинксодержащие ферменты, отщепляют
С-концевые остатки аминокислот. Причём
карбоксипептидаза А

Какие ферменты поджелудочной железы активирует трипсин

Рис.
9-3. Активация химотрипсиногена.
 Молекула
химотрипсиногена состоит из 245
аминокислотных остатков и имеет пять
дисульфидных мостиков. На схеме показаны
участки фермента, подвергающиеся
протеолизу. а-Химотрипсин — активная
стабильная форма фермента — состоит из
трёх полипептидных цепей, ковалентно
связанных между собой двумя дисульфидными
мостиками и нековалентно — за счёт
водородных связей и гидрофобных
взаимодействий.

465

отщепляет
преимущественно аминокислоты, содержащие
ароматические или гидрофобные радикалы,
а карбоксипептидаза В — остатки аргинина
и лизина.

Последний
этап переваривания — гидролиз небольших
пептидов, происходит под действием
ферментов аминопептидаз и дипептидаз,
которые синтезируются клетками тонкого
кишечника в активной форме.

  • Аминопептидазы последовательно
    отщепляют N-концевые аминокислоты
    пептидной цепи. Наиболее известна
    лейцинаминопептидаза — Zn2+-
    или Мn2+-содержащий
    фермент, несмотря на название, обладающий
    широкой специфичностью по отношению
    к N-концевым аминокислотам.

  • Дипептидазы расщепляют
    дипептиды на аминокислоты, но не
    действуют на трипептиды.

В
результате последовательного действия
всех пищеварительных протеаз большинство
пищевых белков расщепляется до свободных
аминокислот.

В.
Защита клеток от действия протеаз

Клетки
поджелудочной железы защищены от
действия пищеварительных ферментов
тем, что:

  • эти
    ферменты образуются
    в виде неактивных предшественников 
    в
    клетках поджелудочной железы и
    активируются только после секреции в
    просвет кишечника. Таким образом, место
    синтеза и место действия этих ферментов
    пространственно разделены.

  • в
    клетках поджелудочной железы
    присутствует белок-ингибитор
    трипсина, 
    образующий
    с активной формой фермента (в случае
    преждевременной активации) прочный
    комплекс.

В
полости желудка и кишечника протеазы
не контактируют с белками клеток,
поскольку слизистая оболочка покрыта
слоем слизи, а каждая клетка содержит
на наружной поверхности плазматической
мембраны полисахариды, которые не
расщепляются протеазами и тем самым
защищают клетку от их действия.

Разрушение
клеточных белков протеазами происходит
при язвенной болезни желудка или
двенадцатиперстной кишки. Однако
начальные механизмы возникновения
язвы ещё мало изучены.

Г.
Транспорт аминокислот в клетки

Аминокислоты,
образовавшиеся при переваривании
белков, быстро всасываются в кишечнике.
Транспорт их осуществляется двумя
путями: через воротную систему печени,
ведущую прямо в печень, и по лимфатическим
сосудам, сообщающимся с кровью через
грудной лимфатический проток. Максимальная
концентрация аминокислот в крови
достигается через 30-50 мин после приёма
белковой пищи (углеводы и жиры замедляют
всасывание аминокислот). Всасывание
L-аминокислот (но не D-изомеров) — активный
процесс, требующий затраты энергии.
Аминокислоты переносятся через кишечную
стенку от слизистой её поверхности в
кровь (рис. 9-4). Перенос через щёточную
кайму осуществляется целым рядом
переносчиков, многие из которых действуют
при участии Nа+-зависимых
механизмов симпорта, подобно переносу
глюкозы (см. раздел 7).

Читайте также:  Узи повышения плотности печени поджелудочной железы

Различная
скорость проникновения аминокислот
через мембраны клеток указывает на
наличие транспортных систем, обеспечивающих
перенос аминокислот как через внешнюю
плазматическую мембрану, так и через
внутриклеточные мембраны. В настоящее
время известно по крайней мере пять
специфических транспортных систем,
каждая из которых функционирует

Какие ферменты поджелудочной железы активирует трипсин

Рис.
9-4. Механизм всасывания аминокислот в
кишечнике.
 L-аминокислота
поступает в энтероцит путём симпорта
с ионом Na+.
Далее специфическая транслоказа
переносит аминокислоту через мембрану
в кровь. Обмен ионов натрия между
клетками осуществляется путём
первично-активного транспорта с помощью
Nа+,К+-АТФ-азы.

466

для
переноса определённой группы близких
по строению аминокислот:

  • нейтральных,
    с короткой боковой цепью (аланин, серии,
    треонин);

  • нейтральных,
    с длинной или разветвлённой боковой
    цепью (валин, лейцин, изолейцин);

  • с
    катионными радикалами (лизин, аргинин);

  • с
    анионными радикалами (глутаминовая и
    аспарагиновая кислоты);

  • иминокислот
    (пролин, оксипролин).

Причём
к числу Nа+-зависимых
относятся переносчики аминокислот,
входящих в первую и пятую группы, а
также переносчик метионина. Независимые
от Na+ переносчики
специфичны для некоторых нейтральных
аминокислот (фенилаланин, лейцин) и
аминокислот с катионными радикалами
(лизин).

Аминокислоты
конкурируют друг с другом за специфические
участки связывания. Например, всасывание
лейцина (если концентрация его достаточно
высока) уменьшает всасывание изолейцина
и валина.

Одна
из специфических транспортных систем
для некоторых нейтральных аминокислот
функционирует в кишечнике, почках и,
по-видимому, мозге. Она получила название
γ-глутамильного цикла (рис. 9-5).

В
этой системе участвуют 6 ферментов,
один из которых находится в клеточной
мембране, а остальные — в цитозоле.
Ключевую роль в транспорте аминокислоты
играет мембранно-связан-ный фермент
γ-глутамилтрансфераза. Этот
фермент является гликопротеином и
катализирует перенос γ-глутамильной
группы от глутатиона (иногда другого
γ-глутамильного пептида) на транспортируемую
аминокислоту и последующий перенос
комплекса в клетку. Глутатион представляет
собой трипептид — γ-глутамилцистеинилглицин,
который находится во всех тканях
животных. Реакция протекает следующим
образом (см. схему А на с. 468).

Аминокислота,
связанная с γ-глутамильным остатком,
оказывается внутри клетки. В следующей
реакции происходит отщепление
γ-глутамильного

Какие ферменты поджелудочной железы активирует трипсин

Рис.
9-5. 
γ-Глутамильный
цикл.
 Система
состоит из одного мембранного и пяти
цитоплазматических ферментов. Перенос
аминокислоты внутрь клетки осуществляется
в комплексе с глутамильным остатком
глутатиона под действием
γ-глутамилтрансферазы. Затем аминокислота
освобождается, а γ-глутамильный остаток
в несколько стадий превращается в
глутатион, который способен присоединять
следующую молекулу аминокислоты. Е1 —
γ-глутамилтрансфераза; Е2 —
у-глутамилциклотрансфераза; Е3 —
пептидаза; Е4 —
оксопролиназа; Е5 —
γ-глутамилцистеинсинтетаза; Е6 —
глутатионсинтетаза.

467

остатка
под действием фермента
γ-глутамилциклотрансферазы (см. схему
Б).

Дипептид
цистеинилглицин расщепляется под
действием пептидазы на 2 аминокислоты
— цис-теин и глицин. В результате этих
3 реакций происходит перенос одной
молекулы аминокислоты в клетку (или
внутриклеточную структуру). Следующие
3 реакции обеспечивают регенерацию
глутатиона, благодаря чему цикл
повторяется многократно. Для транспорта
в клетку одной молекулы аминокислоты
с участием γ-глутамильного цикла
затрачиваются 3 молекулы АТФ.

Д.
Нарушение переваривания белков и
транспорта аминокислот

Небольшую
долю продуктов переваривания белка
составляют негидролизованные короткие
пептиды. У некоторых людей возникает
иммунная реакция на приём белка, что,
очевидно, связано со способностью к
всасыванию

таких
пептидов. Продукты полностью переваренного
белка (аминокислоты) лишены антигенных
свойств и иммунных реакций не вызывают.

У
новорождённых проницаемость слизистой
оболочки кишечника выше, чем у взрослых,
поэтому в кровь могут поступать антитела
молозива (секрет молочных желёз,
выделяющийся в первые дни после родов,
обогащённый антителами и антитоксинами).
Это усугубляется наличием в молозиве
белка — ингибитора трипсина. Протеолитические
ферменты в пищеварительных секретах
новорождённых обладают низкой
активностью. Всё это способствует
всасыванию в кишечнике небольшого
количества нативных белков, достаточного
для обеспечения иммунной реакции.
Очевидно, подобное усиление всасывающей
способности кишечника является причиной
наблюдаемой иногда непереносимости
белков пищи (например, молока и яиц) у
взрослых людей.

Читайте также:  Увеличенная поджелудочная железа у ребенка 7 лет

Гниение

Известно,
что микроорганизмы кишечника
для своего роста также нуждаются в
доставке с пищей определенных аминокислот.
Микрофлора кишечника располагает
набором ферментных систем, отличных
от соответствующихферментов животных тканей и
катализирующих самые разнообразные
превращения пищевых аминокислот.
В кишечнике создаются оптимальные
условия для образования ядовитых
продуктов
распада аминокислот: фенола,индола, крезола, скатола, сероводорода,
метилмер-каптана, а также нетоксичных
для организма соединений: спиртов, аминов, жирных
кислот,кетокислот, оксикислот и
др.

Все
эти превращения аминокислот,
вызванные деятельностью микроорганизмовкишечника,
получили общее название «гниение белков в
кишечнике». Так, в процессе
распада серосодержащих
аминокислот (цистин, цистеин, метионин)
в кишечнике образуются сероводород H2S
и метил-меркаптан CH3SH.
Диаминокислоты – орнитин и лизин –
подвергаются процессудекарбоксилирования с
образованием аминов –
путресцина и кадаверина.

Из
ароматических аминокислот: фенилаланин, тирозин и триптофан –
при аналогичном
бактериальном декарбоксилировании образуются
соответствующие амины: фенилэтиламин,
параоксифенилэтиламин (или тира-мин)
и индолилэтиламин (триптамин).
Кроме того, микробные ферментыкишечника
вызывают постепенное разрушение боковых
цепей циклическихаминокислот,
в частности тирозина и триптофана,
с образованием ядовитых продуктов
обмена – соответственно крезола и фенола, скатола и индола.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Покинув желудок, пища подвергается действию панкреатического сока, кишечного сока и желчи.

Сок поджелудочной железы содержит проферменты – трипсиноген, химотрипсиноген, прокарбоксипептидазы, проэластазу. Проферменты в просвете кишечника активируются, соответственно, до трипсина, химотрипсина, карбоксипептидаз и эластазы способом ограниченного протеолиза. Указанные ферменты осуществляют основную работу по перевариванию белков.

В кишечном соке активны дипептидазы и аминопептидазы. Они заканчивают переваривание белков.

Трипсин, химотрипсин, эластаза являются эндопептидазами. Карбоксипептидазы и аминопептидазы – экзопептидазы.

Регуляция кишечного пищеварения

В кишечнике под влиянием соляной кислоты, поступающей из желудка в составе пищевого комка, начинается секреция гормона секретина, который с током крови достигает поджелудочной железы и стимулирует выделение жидкой части панкреатического сока, богатого карбонат-ионами (HCO3–). В результате рН химуса в тонкой кишке повышается до 7,2-7,5 или, при усиленной секреции, до 8,5.

Благодаря работе желудочных ферментов в химусе имеется некоторое количество аминокислот, вызывающих освобождение холецистокинина-панкреозимина. Он стимулирует секрецию другой, богатой проферментами, части поджелудочного сока, и секрецию желчи.

Нейтрализация кислого химуса в двенадцатиперстной кишке происходит также при участии желчи. Формирование желчи (холерез) идет непрерывно, не прекращаясь даже при голодании.

Трипсин

Синтезируемый в поджелудочной железе трипсиноген в двенадцатиперстной кишке подвергается частичному протеолизу под действием фермента энтеропептидазы, секретируемой клетками кишечного эпителия. От профермента отделяется гексапептид (Вал-Асп-Асп-Асп-Асп-Лиз), что приводит к формированию активного центра трипсина.

Трипсин специфичен к пептидным связям, образованным с участием карбоксильных групп лизина и аргинина, может осуществлять аутокатализ, т.е. превращение последующих молекул трипсиногена в трипсин, также он активирует остальные протеолитические ферменты панкреатического сока – химотрипсиноген, проэластазу, прокарбоксипептидазу.

Параллельно трипсин участвует в переваривании пищевых липидов, активируя фермент переваривания фосфолипидов – фосфолипазу А2, и колипазу фермента липазы, отвечающей за гидролиз триацилглицеролов.

В таких продуктах, как бобовые (соя, горох, фасоль) содержится пептид – ингибитор трипсина, снижающий переваривание белков этих продуктов в сыром, термически необработанном, виде.

Химотрипсин

Образуется из химотрипсиногена при участии трипсина, который расщепляет пептидную связь между аргинином-15 и изолейцином-16, и уже активны промежуточных форм химотрипсина, которые выстригают два дипептида из цепи профермента. Три образованных фрагмента удерживаются друг с другом посредством дисульфидных связей.

Фермент специфичен к пептидным связям, образованным с участием карбоксильных групп фенилаланина, тирозина и триптофана.

Эластаза

Активируется в просвете кишечника трипсином из проэластазы. Гидролизует связи, образованные карбоксильными группами малых аминокислот аланина, пролина, глицина.

Карбоксипептидазы

Карбоксипептидазы являются экзопептидазами, т.е. гидролизуют пептидные связи с С-конца пептидной цепи. Различают два типа карбоксипептидаз – карбоксипептидазы А и карбоксипептидазы В. Карбоксипептидазы А отщепляют с С-конца остатки алифатических и ароматических аминокислот, карбоксипептидазы В – остатки лизина и аргинина.

Аминопептидазы

Являясь экзопептидазами, аминопептидазы отщепляют N-концевые аминокислоты. Важными представителями являются аланинаминопептидаза и лейцинаминопептидаза, обладающие широкой специфичностью. Например, лейцинаминопептидаза отщепляет с N-конца белка не только лейцин, но и ароматические аминокислоты и гистидин.

Дипептидазы

Дипептидазы гидролизуют дипептиды, в изобилии образующиеся в кишечнике при работе других ферментов.

Лизосомы энтероцитов

Малое количество дипептидов и пептидов пиноцитозом попадают в энтероциты и здесь гидролизуются лизосомальными протеазами.

При заболеваниях ЖКТ и нарушении переваривания, при недостаточности соляной кислоты, при желудочном или кишечном кровотечении, при высокобелковой диете часть пептидов, не успевая расщепиться, достигает толстого кишечника и потребляется живущими там микроорганизмами – развивается  гниение белков в кишечнике.

Читайте также:  Заболевания поджелудочной железы лечит врач

В действительности же дела с перевариванием белков в ЖКТ обстоят не совсем так: постепенно в фармакологии накапливаются факты об эффективности пептидных лекарственных препаратов при их пероральном применении. Однако делать определенные выводы никто не спешит.

Источник

Представленная в разделе информация о лекарственных препаратах, методах диагностики и лечения предназначена для медицинских работников и не является инструкцией по применению.

трипсин - лекарственный препаратТрипсин (англ. trypsin) — протеолитический фермент, гидролизующий пептиды и белки, эндопептидаза, а также лекарство.

Трипсин — пищеварительный фермент 

Трипсин является важнейшим для кишечного пищеварения ферментом, расщепляющий белки, поступающей в двенадцатиперстную кишку пищи.

Трипсин синтезируется в поджелудочной железе в виде профермента трипсиногена и, в таком виде, в составе панкреатического сока, попадает в двенадцатиперстную кишку, где, в щелочной среде, под воздействием протеолитического фермента энтерокиназы от молекулы трипсиногена удаляется гексапептид и формируется биологически активная структура трипсина.

После активации трипсина энтерокиназой начинается процесс автокатализа и трипсин далее выступает в качестве фермента, активирующего трипсиноген, химотрипсиноген, прокарбоксипептидазу, профосфолипазу и другие проферменты поджелудочной железы.

Трипсин активен при рН от 5,0 до 8,0 с оптимумом активности при рН = 7,0.

Трипсин (КФ 3.4.21.4), химотрипсин и эластаза представляют группу сериновых протеаз благодаря присутствию в их активном центре серина. Они относятся к одному семейству и составляют 44% от общего количества белка экзокринной части поджелудочной железы. По современным представлениям, трипсин и химотрипсин (аналогично ситуации с пепсином и гастриксином в желудке) существуют в виде множества изоформ.

Схема активации трипсина и других проферментов поджелудочной железы (Калинин А.В.)

Количество трипсина в крови и дуоденальном содержимом

Количество трипсина в крови или в дуоденальном содержимом является, наряду с количественными характеристиками других ферментов, важнейшим показателем внешнесекреторной деятельности поджелудочной железы.

При исследовании внешней секреции методом дуоденального зондирования измеряют активность трипсина до и после введения стимулятора. Активность трипсина в дуоденальном содержимом у здоровых при базальной секреции, измеренной по методу Гросса равен 355 ± 20 ед./мл. После введения таких стимуляторов, как 0,5 % раствор соляной кислоты или секретин у большинства здоровых пациентов в норме в первые 15–30 минут наблюдается снижение активности трипсина, а через час — восстановление исходных значений. При стимулировании холецистокинином активность трипсина через 15–30 минут резко возрастает, а через час возвращается к исходным значениям (см. также Саблин О.А. и др. Панкреозимин-секретиновый тест).

В крови здоровых пациентов среднее содержание трипсина — 169 ±17,6 нг/мл. Пределы колебаний (у детей) от 98,2 до 229,6 нг/мл.

Трипсин — лекарство

дальцекс-трипсинТрипсин — международное непатентованное наименование (МНН) лекарственного средства, а также торговое наименование лекарства. Трипсин по АТХ включён в следующие группы и имеет коды:

  • «B06 Прочие гематологические препараты», код «B06AA07 Трипсин»
  • «D03 Препараты для лечения ран и язв», код «D03BA01 Трипсин»
  • «M09 Прочие препараты для лечения заболеваний костно-мышечной системы», «M09AB52 Трипсин в комбинации с другими препаратами».

Трипсин, как единственное действующее вещество, входит в лекарства: Дальцекс-Трипсин, Трипсин кристаллический, Трипсин (раствор).

Показания к применению трипсина кристаллического
  • заболевания дыхательных путей: трахеит, бронхит, бронхоэктатическая болезнь, пневмония, послеоперационный ателектаз легких, эмпиема плевры, экссудативный плеврит и другие
  • тромбофлебит
  • пародонтоз (воспалительно-дистрофические формы)Флогэнзим
  • остеомиелит
  • гайморит
  • отит
  • ирит, иридоциклит
  • кровоизлияние в переднюю камеру глаза
  • отек периорбитальной области после операций и травм
  • ожоги
  • пролежни
  • гнойные раны (местно).
вобэнзим
Трипсин — компонент комбинированных лекарств

Трипсин также применяется в составе комбинированных ферментных, иммуномодулирующих и других лекарств. В частности, трипсин входит в Вобэнзим, Флогэнзим, Химопсин.

У трипсина имеются противопоказания, побочные действия и особенности применения, необходима консультация со специалистом.

Назад в раздел

Источник