Клетки мишени поджелудочной железы

Гормонами поджелудочной железы являются инсулин и глюкагон.

Глюкагон

Строение

Представляет собой полипептид, включающий 29 аминокислот с молекулярной массой 3,5 кДа и периодом полураспада 3-6 мин.

Синтез

Осуществляется в клетках поджелудочной железы и в клетках тонкого кишечника.

Регуляция синтеза и секреции

Активируют: гипогликемия, адреналин.
Уменьшают: глюкоза, жирные кислоты.

Механизм действия

Аденилатциклазный активирующий.

Мишени и эффекты

Конечным эффектом является повышение концентрации глюкозы и жирных кислот в крови.

Жировая ткань

  • повышает активность внутриклеточной гормон-чувствительной ТАГ-липазы и, соответственно, стимулирует липолиз.

Печень

  • активация глюконеогенеза и гликогенолиза,
  • за счет повышенного поступления жирных кислот из жировой ткани усиливает кетогенез.

Патология

Гиперфункция

Глюкагонома – редко встречающееся новообразование из группы нейроэндокринных опухолей. У больных отмечается гипергликемия и поражение кожи и слизистых оболочек.

Инсулин

Дополнительная, более подробная информация, об инсулине находится на следующей странице.

Строение

Представляет собой полипептид из 51 аминокислоты, массой 5,7 кД, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками.

Синтез

Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.

Регуляция синтеза и секреции

Активируют синтез и секрецию:

  • глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,
  • жирные кислоты и аминокислоты,
  • влияния n.vagus – находится под контролем гипоталамуса, активность которого определяется концентрацией глюкозы крови,
  • гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ингибирующий полипептид,
  • хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.

Уменьшают: влияние симпато-адреналовой системы.

Механизм действия

Осуществляется через  рецепторы с тирозинкиназной активностью (подробно).

Мишени и эффекты

Основным эффектом является снижение концентрации глюкозы в крови благодаря усилению транспорта глюкозы внутрь миоцитов и адипоцитов и  активации внутриклеточных реакций утилизации глюкозы:

  • активируя фосфодиэстеразу, которая разрушает вторичный мессенджер цАМФ, инсулин прерывает эффекты адреналина и глюкагона на печень и жировую ткань. 
  • в мышцах и жировой ткани стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • в печени и мышцах ускоряет синтез гликогена (активация гликогенсинтазы).
  • в печени, мышцах и адипоцитах инсулин стимулирует гликолиз, активируя фосфофруктокиназу и пируваткиназу.
  • полученный в гликолизе пируват превращается в ацетил-SКоА под влиянием активированного инсулином пируватдегидрогеназного комплекса, и далее используется для синтеза жирных кислот. Превращение ацетил-SКоА в малонил-SКоА, первый субстрат синтеза жирных кислот, также стимулируется инсулином (ацетил-SКоА-карбоксилаза).
  • в мышцах усиливает транспорт нейтральных аминокислот в миоциты и стимулирует трансляцию (рибосомальный синтез белков).

Ряд эффектов инсулина заключается в изменении транскрипции генов и скорости трансляции ферментов, отвечающих за обмен веществ, за рост и деление клеток. 

Благодаря этому индуцируется синтез ферментов метаболизма

  • углеводов в печени (глюкокиназа, пируваткиназа, глюкозо-6-фосфатдегидрогеназа),
  • липидов в печени (АТФ-цитрат-лиаза, ацетил-SКоА-карбоксилаза, синтаза жирных кислот, цитозольная малатдегидрогеназа) и адипоцитах (ГАФ-дегидрогеназа, пальмитатсинтаза, липопротеинлипаза).

и происходит репрессия фосфоенолпируват-карбоксикиназы (подавление глюконеогенеза).

Инактивация инсулина 

Инактивация инсулина начинается после интернализации инсулин-рецепторного комплекса и образования эндосомы, в которой и происходит деградация инсулина.  Участвуют две ферментные системы:

  1. Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями А и В, в результате чего гормон распадается.
  2. Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот. 

Период полужизни инсулина не превышает 5-6 минут.  Происходит деградация в основном в печени и почках, но и другие ткани принимают в этом участие. Также в почках инсулин может фильтроваться, захватываться эпителиоцитами проксимальных канальцев и разрушаться до аминокислот.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Источник

Гормоны – биологически активные вещества, которые образуются в железах внутренней секреции, выделяются в кровь при действии различных стимулов и способствуют при этом изменению обмена веществ в клетке-мишени. Клетки-мишени – это клетки, на которые действует гормон.

По химической природе гормоны делятся на:

— белковые гормоны – состоят из аминокислот, белковые гормоны могут являться гликопротеинами. К ним относятся гормоны гипоталамуса, гипофиза, поджелудочной железы

— стероидные гормоны – образуются из холестерола. К ним относятся гормоны коры надпочечников, половые гормоны

— производные аминокислоты тирозина. К ним относятся гормоны щитовидной железы и мозгового слоя надпочечников.

Гормоны гипоталамуса

Относятся гормоны белковой природы. Гормоны гипоталамуса регулируют секрецию и синтез гормонов гипофиза, т.е. клетки-мишени для гормонов гипоталамуса – это клетки гипофиза.

— кортиколиберин – стимулирует секрецию и синтез адренокортикотропного гормона в передней доле гипофиза

— тиреолиберин – стимулирует секрецию и синтез тиреотропного гормона в передней доле гипофиза

— гонадолиберин – стимулирует секрецию и синтез гонадотропинов в передней доле гипофиза

— соматолиберин – стимулирует секрецию и синтез соматотропина в передней доле гипофиза

— меланолиберин – стимулирует секрецию и синтез меланоцитстимулирующего гормона в передней доле гипофиза

— соматостатин – снижает секрецию и синтез соматотропина в передней доле гипофиза

— меланостатин – снижает секрецию и синтез меланоцитстимулирующего гормона в передней доле гипофиза

Гормоны гипофиза

Имеют белковую природу. В передней доле гипофиза вырабатываются

— адренокортикотропный гормон – АКТГ. Орган-мишень – кора надпочечников. Под действием АКТГ происходит секреция и синтез стероидных гормонов в коре надпочечников – кортизола, альдостерона, кортикостерона.

— соматотропный гормон – соматотропин. Влияет на все клетки организма, где усиливает биосинтез белка, ДНК, РНК, гликогена, вызывает распад глюкозы и липидов в тканях с целью получения энергии. Такие биохимические эффекты гормона приводят к ростовым процессам.

— тиреотропин – органы-мишени клетки щитовидной железы. Способствует секреции и синтезу в щитовидной железе тироксина (тетрайодтиронина) – Т4 и трийодтиронина – Т3.

— гонадотропины – фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ). Воздействуют на яичники, матку у женщин и семенники у мужчин. При этом в половых железах вырабатываются стероидные гормоны – эстрогены, прогестерон, тестостерон.

— пролактин – основные клетки-мишени молочные железы, где пролактин обеспечивает лактацию. Кроме того, пролактин способствует созреванию желтого тела в яичнике, стимулирует созревание сперматозоидов, синтез и секрецию тестостерона. Вызывает повышение глюкозы в крови.

— липотропин – действует на жировую ткань, где вызывает распад жиров.

— меланотропин – гормон промежуточной доли гипофиза. Клетки-мишени – пигментные клетки кожи. Вызывает синтез пигментов.

Гормоны задней доли гипофиза

— вазопрессин – антидиуретический гормон. Образуется в гипоталамусе, откуда с помощью белка нейрофизина перемещается в заднюю долю гипофиза, где запасается. Его органы-мишени – дистальные почечные канальцы и сосуды. В дистальных почечных канальцах вазопрессин вызывает реабсорбцию воды. Сосуды под действием вазопрессина сужаются.

— окситоцин — образуется в гипоталамусе, откуда с помощью белка нейрофизина перемещается в заднюю долю гипофиза, где запасается. Его органы-мишени – гладкие мышцы внутренних органов, например, матки и сосуды. Под действием окситоцина происходит сокращение гладкомышечного слоя внутренних органов и сосудов.

Читайте также:  Головокружение при боли в поджелудочной железе

Гормоны поджелудочной железы

Инсулин — гормон белковой природы. Вырабатывается β-клетками островков Лангерганса поджелудочной железы. Инсулин образуется в ответ на повышение концентрации глюкозы в крови.

Органы-мишени мышцы, жировая ткань. Способствует проникновению аминокислот из крови в клетки, обладает анаболическим действием, усиливая синтез белка; способствует проникновению глюкозы из крови в клетки мышц и жировой ткани, при этом снижается уровень глюкозы в крови. Инсулин способствует синтезу липидов в жировой ткани из углеводных источников. Инсулин вырабатывается в ответ на повышение концентрации глюкозы в крови.

Глюкагон – гормон белковой природы, вырабатывается в α-клетках островков Лангерганса поджелудочной железы. Глюкагон синтезируется в поджелудочной железе в ответ на стресс, физическую работу, голодание, заболевания, связанные с усилением распада веществ, т.к. возникает угроза снижения концентрации глюкозы в крови.

Органы-мишени мышцы, печень. В печени происходит распад гликогена до глюкозы, которая поступает в кровь, где ее концентрация повышается. Далее эта глюкоза поступает в жизненноважные органы – мозг, сердце, почки, а также мышцы с целью получения энергии.

В мышцах также происходит распад гликогена до глюкозо-6-фосфата под действием глюкагона, однако, глюкозо-6-фосфат не проникает в кровь.

Гормоны надпочечников

Гормоны коры надпочечников – гормоны стероидной природы, образуются из холестерола.

Кортизол — органы-мишени печень, мышцы. Кортизол синтезируется в коре надпочечников в ответ на стресс, физическую работу, голодание, заболевания, связанные с усилением распада веществ, т.к. возникает угроза снижения концентрации глюкозы в крови. При этом сначала возникает импульс в ЦНС в ответ на гипогликемию. Из ЦНС импульс идет в гипоталамус, где происходит секреция и синтез кортиколиберина. Под действием кортиколиберина в передней доле гипофиза происходит секреция и синтез АКТГ, АКТГ воздействует на кору надпочечников, где происходит секреция и синтез кортизола. Кортизол переносится в кровь и подходит к мышцам и печени, где вызывает соответствующие эффекты. Способствует распаду белков мышц до аминокислот, которые далее переносятся в кровь и в печень. В печени под действием кортизола из аминокислот образуется глюкоза в процессе глюконеогенеза. Образованная глюкоза выносится в кровь, при этом уровень глюкозы в крови повышается. Далее эта глюкоза поступает в жизненноважные органы – мозг, сердце, почки, а также мышцы с целью получения энергии.

Альдостерон – органы-мишени дистальные почечные канальцы. Способствует всасыванию натрия в дистальных почечных канальцах в кровь, при этом всасывается вода и хлор, а калий выводится из организма. Поэтому альдостерон вырабатывается в ответ на снижение натрия в крови, например, при обезвоживании, связанном с кровотечениями, обильным потоотделением. На фоне обезвоживания возникает гиповолемия – снижение объема циркулирующей крови и артериального давления. При снижении концентрации натрия в крови происходит возбуждение в ЦНС, импульс далее поступает в гипоталамус, где происходит секреция и синтез кортиколиберина, который способствует выработке АКТГ в передней доле гипофиза. АКТГ действует на кору надпочечников, где происходит секреция и синтез альдостерона. Альдостерон через кровь поступает к клеткам дистальных почечных канальцев, где происходит всасывание натрия, хлора, воды и выведения калия. В результате в крови повышается уровень натрия, воды, и увеличивается артериальное давление.

Гормоны мозгового слоя надпочечников

Адреналин — производное аминокислоты тирозина. Адреналин синтезируется в мозговом слое надпочечников в ответ на стресс, физическую работу, голодание, заболевания, связанные с усилением распада веществ, т.к. возникает угроза снижения концентрации глюкозы в крови. При этом сначала возникает импульс в ЦНС в ответ на гипогликемию. Далее импульс идет на мозговой слой надпочечников, где происходит секреция и синтез адреналина. Органы-мишени для адреналина мышцы, печень. В печени происходит распад гликогена до глюкозы, которая поступает в кровь, где ее концентрация повышается. Далее эта глюкоза поступает в жизненноважные органы – мозг, сердце, почки, а также мышцы с целью получения энергии.

В мышцах также происходит распад гликогена до глюкозо-6-фосфата под действием глюкагона, однако, глюкозо-6-фосфат не проникает в кровь.

Норадреналин — производное аминокислоты тирозина. Норадреналин действует также, как адреналин. Только его эффекты менее выражены.

Гормоны щитовидной железы

Тироксин – тетраийодтиронин – Т4 и трийодтиронин – Т3 – производные аминокислоты тирозина. Источником тирозина является белок тиреоглобулин. Вырабатываются в клетках щитовидной железы. Воздействуют на все органы. Способствуют в физиологических концентрациях синтезу белка, отвечают за усвоение кислорода на дыхательной цепи, т.е. участвуют в синтезе энергии. В целом регулируют процессы распада и синтеза веществ – основной обмен. Секреция и синтез гормонов щитовидной железы находится под контролем тиреолиберина гипоталамуса и тиреотропина гипофиза.

Гормоны половых желез

Являются гормонами стероидной природы, образуются из холестерола.

Тестостерон – образуется в половых железах мужчин и коре надпочечников у женщин. Способствует развитию половых признаков, регулирует функцию размножения, стимулирует синтез белков в мышцах, вызывая их рост.

Эстрогены — эстрон, эстрадиол, эстриол – образуются в женских половых железах и коре надпочечников у мужчин. В первую фазу цикла стимулируют процессы синтеза веществ в эндометрии матки, в результате эндометрий разрастается, утолщается, богат питательными веществами. Также усиливают процессы синтеза веществ в молочных железах.

Прогестерон — во вторую фазу цикла поддерживает процессы синтеза в эндометрии, способствует имплантации плодного яйца, снижает тонус миометрия, поддерживая беременность.

Секреция и синтез эстрогенов и прогестерона находится под контролем фолликулостимулирующего (ФСГ) и лютеинизирующего гормонов (ЛГ). При этом ФСГ участвует в созревании фолликула и овуляции, а ЛГ поддерживает секрецию и синтез прогестерона в желтом теле яичника, которое образуется после овуляции.

Регуляция секреции и синтеза гормонов

Гормоны гипоталамуса способствуют секреции и синтезу гормонов гипофиза. Гормоны гипофиза способствуют секреции и синтезу гормонов в периферических железах внутренней секреции. Такой тип регуляции называется — прямые положительные связи. Гормоны периферических желез внутренней секреции снижают секрецию и синтез гормонов гипоталамуса и гипофиза – отрицательные обратные связи.

Дата добавления: 2014-02-09; просмотров: 5767; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9819 — | 7685 — или читать все…

Читайте также:

Источник

В
эндокринной части паренхимы поджелудочной
железы располагаются островки
Лангерганса.
Их основными
структурными единицами являются
секреторные (α, β, Δ, F
и другие) клетки.

А-клетки
(α-клетки)

островков
продуцируют
глюкагон.
Он увеличивает гликогенолиз в печени,
снижает в ней утилизацию глюкозы, а
также повышает глюконеогенез и образование
кетоновых тел. Результатом этих
воздействий является увеличение
концентрации глюкозы в крови. Вне печени
глюкагон повышает липолиз и снижает
синтез белков.

На
-клетках
имеются рецепторы, которые при уменьшении
уровня глюкозы во внеклеточной среде
усиливают секрецию глюкагона. Секретин
угнетает продукцию глюкагона, а другие
желудочно-кишечные гормоны стимулируют
ее.

Читайте также:  То можно есть после операции поджелудочной железы

B-клетки
(
-клетки)
синтезируют и накапливают инсулин.
Этот гормон
увеличивает проницаемость клеточных
мембран для глюкозы и аминокислот, а
также способствует превращению глюкозы
в гликоген, аминокислот в белки, а жирных
кислот в триглицериды.

Синтезирующие
инсулин клетки
способны реагировать на изменения
содержания в крови и просвете ЖКТ
калоригенных молекул (глюкозы, аминокислот
и жирных кислот). Из аминокислот наиболее
выражена стимуляция секреции инсулина
аргинином и лизином.

Поражение
островков Лангерганса приводит к гибели
животного из-за нехватки в организме
инсулина. Только
этот гормон снижает содержание глюкозы
в крови.

Д-клетки
(Δ-клетки)

островков синтезируют панкреатический
соматостатин.
В поджелудочной
железе он оказывает тормозящее
паракринное влияние на секрецию гормонов
островками Лангерганса (преобладает
влияние на -клетки),
а внешнесекреторным аппаратом —
бикарбонатов и ферментов.

Эндокринное
влияние панкреатического соматостатина
проявляется торможением секреторной
активности в ЖКТ, аденогипофизе,
паращитовидной железе и почках.

Наряду
с секрецией, панкреатический соматостатин
снижает сократительную активность
желчного пузыря и желчных протоков, а
на всем протяжении ЖКТ -уменьшает
кровообращение, моторику и всасывание.

Активность
Д-клеток возрастает привысоком
содержании в просвете пищеварительного
тракта аминокислот (особенно лейцина
и аргинина) и глюкозы, а также при
увеличении концентрации в крови ХКП,
гастрина, желудочного ингибирующего
полипептида (ЖИП) и секретина. В то же
время, норадреналин угнетает высвобождение
соматостатина.

Панкреатический
полипептид
синтезируется
F-клетками
(или РР-клетками) островков. Он
уменьшает
объем панкреатического секрета и
концентрацию в нем трипсиногена, а также
тормозит выведение желчи, но стимулирует
базальную секрецию желудочного сока.

Выработка
панкреатического полипептида стимулируется
парасимпатической нервной системой,
гастрином, секретином и ХКП, а также при
голодании, приеме богатого белками
корма, гипогликемии и физической
нагрузке.

Интенсивность
выработки гормонов поджелудочной железы
контролируется вегетативной нервной
системой (парасимпатические нервы
вызывают гипогликемию, а симпатические
— гипергликемию). Однако основными
факторами регуляции секреторной
активности клеток в островках Лангерганса,
являются концентрации питательных
веществ в крови и просвете ЖКТ. Благодаря
этому, своевременные реакции клеток
островкового аппарата обеспечивают
поддержание постоянного уровня
питательных веществ в крови между
приемами корма.

ЭНДОКРИННАЯ ФУНКЦИЯ ПОЛОВЫХ ЖЕЛЕЗ

После
наступления половой зрелости основными
источниками половых гормонов в организме
животных становятся постоянные половые
железы (у самцов — семенники, а у самок
— яичники). У самок периодически могут
появляться и временные эндокринные
железы (например, плацента во время
беременности).

Половые
гормоны делят на мужские (андрогены) и
женские (эстрогены).

Андрогены
(тестостерон,
андростендион, андростерон
и др.) специфически стимулируют рост,
развитие и функционирование органов
размножения самцов, а с наступлением
половой зрелости — образование и
созревание мужских половых клеток.

Еще
до рождения в организме плода формируются
вторичные половые признаки. Это в
значительной степени регулируется
образующимися в семенниках андрогенами
(секретируются клетками Лейдига) и
фактором, секретируемым клетками Сертоли
(находятся в
стенке семенного канальца).
Тестостерон обеспечивает дифференцировку
наружных половых органов по мужскому
типу, а секрет клеток Сертоли предотвращает
образование матки и маточных труб.

В
период полового созревания андрогены
ускоряют инволюцию тимуса, а
в других тканях стимулируют накопление
питательных веществ, синтез белка,
развитие мышечной и костной ткани,
повышают физическую работоспособность
и сопротивляемость организма
неблагоприятным воздействиям.

Андрогены
влияют на ЦНС (например, вызывают
проявления полового инстинкта). Поэтому
удаление половых желез (кастрация) у
самцов делает их спокойными и может
привести к нужным для хозяйственной
деятельности изменениям. Например,
кастрированные животные быстрее
откармливаются, мясо их вкуснее и нежнее.

До
рождения, секреция андрогенов
обеспечивается совместным действием
на плод ЛГ самки и хорионического
гонадотропина (ХГ). После рождения,
развитие семенных канальцев, спермиев
и сопровождающую эти процессы выработку
БАВ клетками Сертоли стимулирует
собственный гонадотропин самца — ФСГ,
а ЛГ вызывает
секрецию
тестостерона
клетками Лейдига.
Старение сопровождается угасанием
активности половых желез, но продолжается
выработка половых гормонов надпочечником.

К
видовым особенностям клеток Сертоли
семенников жеребца, быка и кабана
относится их способность кроме
тестостерона вырабатывать эстрогены,
которые регулируют обмен веществ в
половых клетках.

Яичники
в организме половозрелой самки в
соответствии со стадиями полового цикла
вырабатывают эстрогены
и гестагены
.
Основным источником эстрогенов
(эстрона, эстрадиола и эстриола) являются
фолликулы, а гестагенов — желтое тело.

У
неполовозрелой самки эстрогены
надпочечников стимулируют развитие
репродуктивной системы (яйцеводов,
матки и влагалища) и вторичных половых
признаков (определенного телосложения,
молочных желез и т.д.). После наступления
половой зрелости, концентрация в крови
женских половых гормонов значительно
повышается за счет их интенсивной
выработки яичниками. Возникающие при
этом уровни эстрогенов
стимулируют
созревание половых клеток, синтез белков
и образование мышечной ткани в большинстве
внутренних органов самки, а также
повышают сопротивляемость ее организма
к вредным воздействиям и вызывают
связанные с половыми циклами изменения
в органах животного.

Высокие
концентрации эстрогена вызывают рост,
расширение просвета и усиление
сократительной активности яйцеводов.
В матке они повышают кровенаполнение,
стимулируют размножение клеток эндометрия
и развитие маточных желез, а также
изменяют чувствительность миометрия
к окситоцину.

У самок многих
видов животных эстрогены вызывают
ороговение клеток влагалищного эпителия
перед течкой. Поэтому качество гормональной
подготовки самки к спариванию и овуляции
выявляют по цитологическим анализам
вагинального мазка.

Эстрогены
также способствуют формированию
состояния «охоты» и соответствующих
половых рефлексов в наиболее благоприятную
для оплодотворения стадию полового
цикла.

После
овуляции, на месте бывшего фолликула
образуется желтое
тело.

Вырабатываемые им гормоны (гестагены)
влияют на матку, молочные железы и ЦНС.
Они вместе с эстрогенами регулируют
процессы зачатия, имплантации
оплодотворенной яйцеклетки, вынашивания
беременности, родов и лактации. Основным
представителем гестагенов является
прогестерон. Он стимулирует секреторную
активность маточных желез и делает
эндометрий способным реагировать на
механические и химические воздействия
разрастаниями, которые необходимы для
имплантации
оплодотворенной яйцеклетки
и образования плаценты. Прогестерон
также снижает
чувствительность матки к окситоцину и
расслабляет ее. Поэтому
преждевременное снижение концентрации
гестагенов в крови беременных самок
вызывает роды до полного созревания
плода.

Если
беременность не наступила, то желтое
тело подвергается инволюции (продукция
гестагенов прекращается) и начинается
новый овариальный цикл. Умеренные
количества прогестерона в синергизме
с гонадотропинами стимулируют овуляцию,
а большие — тормозят секрецию гонадотропинов
и овуляция не происходит. Небольшие
количества прогестерона также необходимы
для обеспечения течки и готовности к
спариванию. Кроме этого, прогестерон
участвует в формировании доминанты
беременности

(гестационной доминанты), направленной
на обеспечение развития будущего
потомства.

После
воздействия эстрогенов, прогестерон
способствует развитию железистой ткани
в молочной железе, что приводит к
формированию в ней секреторных долек
и альвеол.

Наряду
со стероидными гормонами желтое тело,
эндометрий и плацента, преимущественно
перед родами, продуцируют гормон
релаксин.
Его выработка стимулируется высокими
концентрациями ЛГ и вызывает повышение
эластичности лонного сочленения,
расслабление связки тазовых костей, а
непосредственно перед родами повышает
чувствительность миометрия к окситоцину
и вызывает расширению маточного зева.

Читайте также:  Анализ на антитела к клеткам поджелудочной железы

Плацента
возникает в несколько этапов. Сначала,
в ходе дробления оплодотворенной
яйцеклетки образуется трофобласт.
После присоединения к нему внезародышевых
кровеносных сосудов трофобласт
превращается в хорион,
который после плотного соединения с
маткой становится сформировавшейся
плацентой.

У
млекопитающих плацента обеспечивает
прикрепление, иммунологическую защиту
и питание плода, выведение продуктов
обмена, а также выработку гормонов
(эндокринная функция), необходимых для
нормального течения беременности.

Уже
на ранних сроках беременности в местах
прикрепления ворсинок хориона к матке
вырабатываетсяхорионический
гонадотропин
.
Его появление ускоряет развитие зародыша
и предотвращает инволюцию желтого тела.
Благодаря этому желтое тело поддерживает
высокий уровень прогестерона в крови
до тех пор, пока плацента сама не начнёт
синтезировать его в необходимом
количестве.

Вырабатываемые
в организме беременных самок негипофизарные
гонадотропины имеют видовые особенности,
но могут влиять на репродуктивные
функции и у других видов животных.
Например, введение гонадотропина
сыворотки крови жеребых кобыл
(ГСЖК)
вызывает у многих млекопитающих выделение
прогестерона. Это сопровождается
удлинением полового цикла и задерживает
приход охоты. У коров и овец ГСЖК также
вызывает одновременный выход нескольких
зрелых яйцеклеток, что используется
при трансплантации эмбрионов.

Плацентарные
эстрогены

вырабатываются плацентой большинства
млекопитающих (у приматов — эстрон,
эстрадиол
и
эстриол,
а у лошади — эквилин
и эквиленин)
преимущественно во второй половине
беременности из дегидроэпиандростерона
образующегося в надпочечниках плода.

Плацентарный
прогестерон

у ряда млекопитающих (приматы, хищники,
грызуны) секретируются в количествах
достаточных для нормального вынашивания
плода даже после удаления желтых тел.

Плацентарный
лактотропин

(плацентарный лактогенный гормон,
плацентарный пролактин,
хорионический соматомаммотропин)
поддерживает
рост плода, а у самки
увеличивает синтез белка в клетках и
концентрацию СЖК в крови, стимулирует
рост секреторных отделов молочных желёз
и их подготовку к лактации, а также
задерживает
в организме ионы кальция, снижает мочевую
экскрецию фосфора и калия.

По
мере увеличения сроков беременности в
крови самок растет уровень плацентарного
кортиколиберина
,
который увеличивает чувствительность
миометрия к окситоцину. Данный либерин
практически не влияет на секрецию АКТГ.
Это связано с тем, что во время беременности
в крови растет содержание белка, который
быстро нейтрализует кортиколиберин и
он не успевает подействовать на
аденогипофиз.

ТИМУС

Тимус
(зобная или вилочковая железа) имеется
у всех позвоночных животных. У большинства
млекопитающих он состоит из двух
соединенных друг с другом долей,
расположенных в верхней части грудной
клетки сразу за грудиной. Однако, у
сумчатых животных эти доли тимуса обычно
остаются отдельными органами. У
пресмыкающихся и птиц железа обычно
имеет вид цепочек, расположенных по обе
стороны шеи.

Наибольших
размеров по отношению к массе тела тимус
большинства млекопитающих достигает
к моменту рождения. Затем он медленно
растет и в период полового созревания
достигает максимальной массы. У морских
свинок (и некоторых других видов животных)
крупный тимус сохраняется на протяжении
всей жизни, но у большинства высокоразвитых
животных после полового созревания
железа постепенно уменьшается
(физиологическая
инволюция), но
полной атрофии ее не происходит.

В
тимусе эпителиальные клетки продуцируют
тимические
гормоны влияющие эндокринным и паракринным
путем на гемопоэз, а также дифференцировку
и активность Т-клеток.

В
тимусе на предшественники Т-лимфоцитов
последовательно действуют тимопоэтин
и тимозины.
Они делают
дифференцирующиеся в тимусе клетки
чувствительными к активированному
кальцием тимулину
(или тимическому сывороточному фактору
— ТСФ).

П
р и м е ч а н и е: Возрастное снижение
содержания ионов кальция в организме
является причиной падения активности
тимулина у старых животных.

Секреторная
активность тимуса тесно связана с
деятельностью гипоталамуса и других
эндокринных желез (гипофиза, эпифиза,
надпочечников, щитовидной железы и
гонад). Гипоталамический
соматостатин, удаление
надпочечников и щитовидной железы
снижают выработку
тимических гормонов, а эпифиз
и кастрация усиливают гормонопоэз в
тимусе.
Кортикостероиды
регулируют распределение тимических
гормонов между тимусом, селезенкой и
лимфоузлами, а тимэктомия приводит к
гипертрофии коры надпочечников.

Перечисленные
примеры свидетельствуют о том, что
вилочковая железа обеспечивает интеграцию
нейро-эндокринной и иммунной систем в
целостном макроорганизме.

ЭПИФИЗ

Эпифиз
(шишковидная железа) расположена у
позвоночных под кожей головы или в
глубине мозга. Основными клетками
эпифиза у млекопитающих являются
пинеалоциты,
а у более
примитивных животных здесь имеются и
фоторецепторы. Поэтому,
наряду с эндокринной функцией эпифиз
может обеспечивать ощущение степени
освещенности объектов. Это позволяет
глубоководным рыбам осуществлять
вертикальную миграцию в зависимости
от смены дня и ночи, а миногам и
пресмыкающимся — оберегать себя от
опасности сверху. У
некоторых перелетных птиц эпифиз,
вероятно, выполняет функцию навигационных
приборов при перелетах.

Эпифиз
земноводных уже способен вырабатывать
гормон мелатонин,
которыйуменьшение
количество пигмента в клетках кожи.

Пинеалоциты
непрерывно синтезируют гормон серотонин,
который в темное время суток и при низкой
активности симпатической нервной
системы (у птиц и млекопитающих)
превращается в мелатонин. Поэтому
продолжительность дня и ночи, влияют
на содержание этих гормонов в эпифизе.
Возникающие при этом ритмические
изменения их концентрации в шишковидной
железе определяют у животных суточный
(циркадианный) биологический ритм
(например, периодичность сна и колебания
температуры тела), а также влияет на
формирование таких сезонных реакций
как зимняя спячка, миграция, линька и
размножение.

Увеличение
содержания мелатонина в эпифизе оказывает
снотворный, анальгезирующий и седативный
эффекты, а также тормозит
половое созревание молодняка.
Поэтому после удаления эпифиза у цыплят
быстрее наступает половое созревание,
у самцов млекопитающих — гипертрофируются
семенники и усиливается созревание
спермиев, а у самок — удлиняется период
жизни желтых тел и увеличивается матка.

Мелатонин
снижает секрецию ЛГ, ФСГ, пролактина и
окситоцина. Поэтому низкий уровень
мелатонина в светлое время суток
способствует усилению молокообразования
и высокой половой активности животных
в те времена года, когда ночи наиболее
короткие (весной и летом). Мелатонин
также нейтрализует повреждающее действие
стрессоров и является естественным
антиоксидантом.

У
млекопитающих серотонин и мелатонин
выполняют свои функции в основном в
эпифизе, а дистантными гормонами железы,
вероятно, являются полипептиды.
Значительная
их часть наряду с кровью, секретируется
в спинномозговую жидкость и через нее
поступает в различные отделы ЦНС. Это
оказывает преимущественно тормозное
влияние на поведение животного и другие
функции мозга.

В
эпифизе уже обнаружено
около 40 секретирующихся в кровь и
спиномозговую жидкость биологически
активных пептидов. Из них наиболее
изучены антигипоталамические факторы
и адреногломерулотропин.

Антигипоталамические
факторы обеспечивают связь эпифиза с
гипоталамо-гипофизарной системой. К
ним, например, относятся аргинин-вазотоцин
(регулирует секрецию пролактина) иантигонадотропин(ослабляет секрецию
ЛГ).

Адреногломерулотропин
стимулируя выработку альдостерона
надпочечником, влияет на водно-солевой
обмен.

Таким
образом, основной
функцией эпифиза
является регуляция
и координация биоритмов.
Посредством контроля деятельности
нервной и эндокринной систем животного,
шишковидная железа обеспечивает
опережающую реакцию его систем на смену
времени суток и сезона.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник