Лабораторная оценка эндокринной функции поджелудочной железы

Для диагностики заболеваний ПЖ применяют следующие методы:

• исследование активности ферментов ПЖ в крови, моче;

• зондовые и беззондовые методы изучения экзокринной функции ПЖ;

• оценка инкреторной функции ПЖ (определение содержания С-пептида в крови, проба Штауба—Трауготта и др.);

• оценка трофической недостаточности.

Кроме того, для лабораторной диагностики заболеваний ПЖ используют иммунологические, генетические, цитологические, гистологические исследования, определение в крови уровня панкреатического полипептида, онкомаркёров СА 19-9, карциноэмбриональный антиген и др.

Исследование активности ферментов поджелудочной железы в крови и моче

Первую футтпу диагностических тестов обычно используют для обнаружения феномена выхода (уклонения) ферментов в кровь, который возникает при деструкции паренхимы органа и повышении внутрипротокового давления.

Ферменты поступают в интерстициальную жидкость, лимфу и кровь, а позже — в мочу. Панкреатические ферменты проникают в кровь также из секреторных ходов и протоков ПЖ. Кроме того, происходит всасывание ферментов в проксимальных отделах тонкой кишки.

Определение амилазы и её изоферментов

Плазма крови содержит а-амилазу двух изоэнзимных типов, продуцируемых ПЖ и слюнными железами (преимущественно околоушными):

• панкреатическую (р-тип);

• слюнную (s-тип).

Кроме того, амилолитическая активность обнаружена во многих тканях: тонком кишечнике, печени, почках, мышцах, лёгких, маточных трубах и жировой ткани. Это, однако, не означает, что все они синтезируют и транспортируют в кровь значительное количество амилазы. Доля амилолитической активности панкреатической а-амилазы составляет 30—50%. Р- и s-амилазы различны по физико-химическим свойствам, имеют разные почечные ктиренсы и периоды полураспада в организме (s-амилаза — 18 ч, р-амилаза — 124 ч).

Амилаза в крови находится в свободном (растворённом) и связанном с белками плазмы и форменными элементами состоянии.

Итак, определение активности амилазы в крови и моче — один из первых и наиболее распространённых биохимических методов диагностики панкреатитов. С 1908 г., когда Вольгемут разработал метод определения активности амилазы в биологических жидкостях, было предложено более двухсот методических приёмов проведения этого анализа.

Изоферменты амилазы измеряют во многих обычных лабораториях. Их определяют в сыворотке, моче или других биологических жидкостях при хроматографии, электрофорезе или изоэлектрическом фокусировании. Модификация амилазного теста — определение клиренсного отношения амилаза—креатинин, но этот тест требует сбора мочи в течение 24 ч. Результат выражают в процентах клиренсного отношения:Клиренсное отношение = (активность мочевой амилазы/активность сывороточной амилазы) X (сывороточный креатинин/мочевой креатинин) X 100

При ОП клиренсное отношение повышено, что можно объяснить увеличением активности панкреатического изофермента, имеющего больший клиренс (по сравнению с изоферментом s-тииа), и уменьшением канальцевой реабсорбции белков. Ввиду вариабельности изменений функций почек при ОП, ценность определения отношения клиренсов амилазы и креатинина вызывает серьёзные сомнения, и в практике этот метод широкого распространения не получил.

Существуют противоречивые сведения о стабильности а-амилазы: наряду с утверждением о том, что активность фермента стабильна при комнатной температуре в течение недели, есть данные о снижение её активности уже через несколько часов. Этим можно объяснить низкую восприимчивость метода. Невысокая чувствительность определения активности амилазы в крови и моче связана также с кратковременностью гиперамилаземии и гиперамилазурии при панкреатитах. Так, активность амилазы в крови начинает нарастать через 2— 12 ч от начала обострения заболевания, достигает максимума через 20—30 ч и при благоприятном течении заболевания нормализуется через 2—4сут.

Активность амилазы в моче начинает нарастать через 4—10 ч от начала заболевания, а через 8—10 ч уже может нормализоваться, но, как правило, сохраняется в течение 3 сут после подъёма.

В период обострения ХП активность амилазы в крови и моче может оставаться в пределах нормальных величин, так как у таких больных подъём активности фермента происходит на фоне исходно низкого уровня, связанного с фиброзом паренхимы ПЖ. При тяжёлом, прогрессирующем течении ОП или при обострении ХП активность амилазы может «истощаться» до нормальных и субнормальных величин. У 20% пациентов с ОП отмечают нормальные показатели активности амилазы сыворотки. Таким образом, по сывороточной активности амилазы невозможно определить тяжесть текущего обострения панкреатита и ближайший прогноз.

По данным литературы, определение активности амилазы в моче более информативно, чем в крови, так как гиперамилазурия более стойка, чем гиперамилаземия. Доступность получения мочи позволяет многократно повторять исследование и, следовательно, обнаруживать даже небольшой подъём показателя. Кроме того, вследствие различий в экскреции почками активность панкреатической изоамилазы в моче значительно выше, чем в крови.

Обострение XII сопровождается специфическим повреждением проксимальной части канальца нефрона, которое приводит к снижению реабсорбции и увеличению почечного клиренса, т.е. гиперамилазурия — результат гиперамилаземии и подавления канальцевой реабсорбции. Как уже отмечено, на этом основано определение соотношения клиренсов амилазы и креатинина. Более чувствительным, чем амилазурический тест, считают вычисление дебитовуроамилазы, когда исследуют мочу, собранную через определённые промежутки времени (до и после пищевой нагрузки). Чувствительность этих дебитов при ХП составляет 49-73%.

Читайте также:  Ожирение поджелудочной железы лечение медикаментозное

Для повышения чувствительности исследования активности амилазы в крови и моче необходимо проводить его в первые сутки пребывания больных ХП в стационаре, не менее двух раз после инструментальных исследований, а также в момент усиления болевого абдоминального синдрома. При этом чувствительность теста повышается с 40 до 75-85%.

Интерпретация результатов определения активности амилазы в крови и моче затруднена ещё и тем, что фермент содержат слюнные железы, толстая кишка, скелетные мышцы, почки, лёгкие, яичники, маточные трубы, следовательно, можно определять амилолитическую активность в молоке, слюне, слёзной жидкости и поте. Таким образом, возможно повышение её уровня в биологических жидкостях вследствие внепанкреатических причин (табл. 2-8): при перфорации язвы, кишечной непроходимости, перитоните, тромбозе брыжеечных сосудов, холецистите, холангите, паротите, почечной недостаточности, внематочной беременности, остром аппендиците, раке лёгких, диабетическом ацидозе, феохромоцитоме; после операций по поводу пороков сердца, резекции печени; при употреблении препаратов опия, сульфаниламидов, тиазидных диуретиков, оральных контрацептивов.

Таблица 2-8. Причины гиперамилаземии

Причины гиперамилаземии

Для повышения специфичности гиперамилаземии предложено считать диагностически значимым повышение активности фермента в 3—6 раз. Однако патогномоничной для панкреатита активности фермента в крови не существует. Вследствие значительного запаса фермента в ацинарных клетках любое нарушение их целостности или малейшее затруднение оттока секрета ПЖ приводит к значительному выходу амилазы в кровь даже при легком течении панкреатита.

Для повышения специфичности исследования активности фермента в крови следует определять не суммарное его содержание, а панкреатическую фракцию. У здоровых людей р-амилаза составляет до 40% общей сывороточной амилазы, остальные 60% представлены слюнным изоферментом. При панкреатитах это соотношение изменяется: активность панкреатической изоамилазы составляет 75—80% активности общей амилазы крови. Определение активности р-амилазы особенно важно больных с ХП и нормальной активностью общей амилазы.

Повышение показателя указывает на обострение ХП, а снижение — на экзокринную недостаточность ПЖ, связанную с атрофией ацинарной ткани и фиброзом органа у больных, перенёсших ряд атак. Специфичность определения активности панкреатической амилазы при ХП не превышает 88,6%, чувствительность — 40—96,9%.

Маев И.В., Кучерявый Ю.А.

Источник

Оценка инкреторной функции поджелудочной железы

Диагностика нарушений эндокринной функции ПЖ носит вспомогательный характер, поскольку обладает низкой специфичностью. В то же время контроль гликемии считают обязательным, потому что знание врачом состояния углеводного обмена позволяет во многом определять тактику ведения больного и прогнозировать дальнейшее течение заболевания.

Повышение глюкозы в плазме крови может носить обратимый характер при ОП, обострении ХП, раке ПЖ, либо стойкий характер на поздних стадиях заболевания. Более чувствительными методами оценки инкреторной функции ПЖ считают определение уровня С-пептида, радиоиммунного инсулина и фруктоза мина. Полагают, что наиболее информативно определение С-пептида в сыворотке крови, поскольку он не метаболизируется в печени и его уровень в крови более стабилен, чем содержание инсулина. Информативность исследования возрастает при динамическом изучении концентрации С-пептида в крови после пищевой нагрузки.

Для изучения эндокринной функции ПЖ можно использовать пробу Штауба—Трауготта. Определяют содержание глюкозы натощак, затем больной дважды (с перерывом в 1 ч) принимает по 50 г глюкозы. В течение 3 ч каждые 30 мин определяют уровень гликемии. В норме подъём глюкозы в крови регистрируют только после первого приёма глюкозы, поскольку к моменту второго приёма выработанный ранее инсулин ещё циркулирует в кровеносном русле, не позволяя существенно «вырасти» уровню гликемии. С учётом того, что при панкреатитах исходно отсутствует избыток инсулина, повторный приём глюкозы вызывает второй подъём сахара крови. При этом регистрируют «двугорбую кривую», которая косвенно указывает на инсулярную недостаточ ность.

Кроме того, важен срок нормализации гликемии, составляющий в норме менее 3 ч, а при ХП с инкреторной недостаточностью — значительно дольше.

При проведении пробы Штауба—Трауготта возможны ещё два вида гликемических кривых. Ирритативной кривой свойственна нормальная исходная концентрация глюкозы крови, повышение её после нагрузки глюкозой в 2,5 раза и более и быстрое падение до субнормального уровня. После второй нагрузки показатель глюкозы крови не возрастает, что более характерно для патологии гипоталамической области. Диабетическую кривую характеризует умеренная гипергликемия натощак и увеличение её после первой нагрузки в два раза и более. После второй нагрузки уровень гликемии остаётся высоким до конца исследования, Такой тип сахарной кривой характерен для сахарного диабета (в том числе, и панреатогенного).

Лабораторная оценка трофической недостаточности

Висцеральный пул белков (белков внутренних органов и крови) оценивают путём исследования уровня сывороточного альбумина и трансферрина (табл. 2-10). Простым и информативным способом оценки висцерального белкового статуса считают определение абсолютного числа лимфоцитов, характеризующего состояние иммунной системы. Предложены комплексы исследований, проводимых для диагностики и лечения трофической недостаточности (табл. 2-11).

Читайте также:  Резекция поджелудочная железа показания

Таблица 2-10. Начальный комплекс лабораторных исследований при трофической недостаточности

Начальный комплекс лабораторных исследований при трофической недостаточности

Таблица 2-11. Дополнительный комплекс исследования при трофической недостаточности

Дополнительный комплекс исследования при трофической недостаточности

Дефицит витаминов и микроэлементов у больных с заболеваниями ПЖ может вызывать нарушения в системе антиоксидантной защиты. Как известно, снижение сывороточного уровня антиоксидантов может приводить к повреждению ткани ПЖ свободными радикалами и инициировать развитие воспалительного процесса (табл. 2-12). Дефицит рибофлавина приводит к нарушению синтеза панкреатических ферментов, недостаточность цинка вызывает повреждение ацинарных клеток, а при дефиците селена можно наблюдать дегенерацию и фиброз ткани ПЖ, что может требовать дополнительных исследований (табл. 2-13).

Таблица 2-12. Специальный (дополнительный) комплекс исследования при трофической недостаточности

Специальный (дополнительный) комплекс исследования при трофической недостаточности

Таблица 2-13. Объективная оценка степени белково-энергетической недостаточности по биохимическим и иммунологическим параметрам сыворотки крови

Объективная оценка степени белково-энергетической недостаточности по биохимическим и иммунологическим параметрам сыворотки крови
Объективная оценка степени белково-энергетической недостаточности по биохимическим и иммунологическим параметрам сыворотки крови

На основании указанных ранее клинических и лабораторных маркёров трофической недостаточности выделяют несколько ее клинических типов (табл. 2-14).

Таблица 2-14. Клинические типы белково-энергетической недостаточности

Клинические типы белково-энергетической недостаточности

Маев И.В., Кучерявый Ю.А.

Источник

Оценка
внешнесекреторной функции поджелудочной
железы: осуществляется с помощью зондовых
(инвазивных, требующих введения кишечного
зонда) и беззондовых методов. Зондовые
методы (тесты) информативные, но
трудоемкие, Преимущество беззондовых
методов заключается в безопасности для
пациента и относительно низкой стоимости,
однако практически все они имеют низкую
чувствительность и специфичность по
сравнению с инвазивными методиками. !

(1)
стандартное копрологическое исследование:

повышенное содержание в кале нейтрального
жира и мыл при малоизмененном содержании
жирных кислот; повышенное количество
мышечных волокон в кале (креаторея) –
является более поздним, чем стеаторея,
признаком недостаточности поджелудочной
железы и свидетельствует о более тяжелой
степени нарушений;

(2)
количественное определение жира в кале

трудоемкий тест (норм количество жира
в кале менее 5 г/сут):

зондовые методы

(1) секретин–панкреозиминовый тест
снован на оценке прироста секреции на
фоне введения секретина и холецистокинина;
; (2) непрямой зондовый метод (тест Лунда)
основан на сборе тонкокишечного
содержимого с помощью интубации после
приема стандартного пробного завтрака;
в зависимости от степени внешнесекреторной
недостаточности поджелудочной железы
чувствительность теста колеблется от
66 до 94%;

беззондовые методы
все
они основаны на пероральном введении
специфических субстратов для ферментов
поджелудочной железы; после взаимодействия
последних с ферментами поджелудочной
железы в моче и/или в сыворотке крови
определяются продукты расщепления, по
количеству которых судят о степени
внешнесекреторной недостаточности: 1
— бентирамидный тест* (NBT–PABA тест); 2 —
йодо-липоловый тест: липаза расщепляет
йодолипол до йодидов, которые определяются
в моче; 3 — флюоресцеин–дилауратный
тест.

*Бентирамидный
тест (NBT-PABA-тест).
Основан
на том, что N-бензоил-L-тирозил-р-аминобензойная
кислота гидролизуется химотрипсином
до р-аминобензойной кислоты (PABA); затем
PABA всасывается, конъюгируется в печени
и экскретируется с мочой, где ее и
определяют.


определение степени потребления
плазменных аминокислот поджелудочной
железой:

метод основан на том, что при стимуляции
секретином или церулеином поджелудочная
железа поглощает из плазмы крови большое
количество аминокислот, необходимых
для синтеза панкреатических ферментов;
чувствительность метода составляет
69–96%, специфичность – 54–100%;

качественное копрологическое исследование:

общими критериями внешнесекреторной
недостаточности считаются повышенное
содержание нейтрального жира и мыл при
малоизмененном уровне желчных кислот,
увеличение содержания непереваренных
мышечных волокон, а также присутствие
в кале крупных фрагментов непереваренной
пищи;

количественное определение жира в кале:

метод основан на том, что после приема
100 г жира с пищей происходит выделение
с калом до 7 г нейтрального жира и жирных
кислот за сутки; увеличение его количества
свидетельствует о расстройствах
переваривания и всасывания жира;

определение фекального трипсина и
химотрипсина: т
ест
основан на измерении уровня трипсина
и химотрипсина в образцах кала
чувствительность теста составляет
70–90%, специфичность – 50–80%; при определении
содержания химотрипсина в кале получают
около 10% ложноотрицательных и 13%
ложноположительных результатов.

В
настоящее время наиболее информативным
способом оценки внешнесекреторной
функции поджелудочной железы служит
определение активности панкреатической
эластазы-1 (Е1)

фермента поджелудочной железы, который
остается в неизмененном виде во время
его транзита по кишечнику. Концентрация
этого фермента в стуле отражает истинное
состояние экзокринной функции
поджелудочной железы. Концентрация Е1
в дуоденальном соке – 4-6% от общего
белка. Е1 стабильна при хранении образцов
кала: при +4-80С до 3-х дней; при -200С – до 1
года. В отличие от других методов
диагностики внешнесекреторной функции
определение Е1 в кале имеет следующие
преимущества:
• Е1 является абсолютно
специфичной для поджелудочной железы;

Е1 – самый стабильный фермент при
транзите по кишечнику и его количество
в кале в 5-6 раз выше, чем в дуоденальном
соке и концентрация Е1 отражает секреторную
способность поджелудочной железы. Таким
образом, с помощью теста на Е1 можно
определить или исключить наличие
экзокринной недостаточности поджелудочной
железы;
• результаты определения
коррелируют с результатами инвазивных
тестов;
• различия в концентрации Е1
кала, полученных от разных индивидуумов
очень незначительны;
• заместительная
ферментативная терапия не влияет на
концентрацию Е1 (моноклональные антитела,
используемые в данном тесте, не
взаимодействуют с эластазой животного
происхождения, которая присутствует в
ферментативных препаратах).

Читайте также:  Болит поджелудочная железа и рвет

Источник

  • Поджелудочная
    железа – железа со смешанной функцией.
    Морфологической единицей железы служат
    островки Лангерганса, преимущественно
    они расположены в хвосте железы.
    Бета-клетки островков вырабатывают
    инсулин, альфа-клетки – глюкагон,
    дельта-клетки – соматостатин. В
    экстрактах ткани поджелудочной железы
    обнаружены гормоны ваготонин и
    центропнеин.

  • Инсулин
    регулирует углеводный обмен, снижает
    концентрацию сахара в крови, способствует
    превращению глюкозы в гликоген в печени
    и мышцах. Он повышает проницаемость
    клеточных мембран для глюкозы: попадая
    внутрь клетки, глюкоза усваивается.
    Инсулин задерживает распад белков и
    превращение их в глюкозу, стимулирует
    синтез белка из аминокислот и их
    активный транспорт в клетку, регулирует
    жировой обмен путем образования высших
    жирных кислот из продуктов углеводного
    обмена, тормозит мобилизацию жира из
    жировой ткани.

  • В
    бета-клетках инсулин образуется из
    своего предшественника проинсулина.
    Он переносится в клеточные аппарат
    Гольджи, где происходят начальные
    стадии превращения проинсулина в
    инсулин.

  • В
    основе регуляции
    инсулина
    лежит нормальное содержание глюкозы
    в крови: гипергликемия приводит к
    увеличению поступления инсулина в
    кровь, и наоборот.

  • Паравентрикулярные
    ядра гипоталамуса повышают активность
    при гипергликемии, возбуждение идет
    в продолговатый мозг, оттуда в ганглии
    поджелудочной железы и к бета-клеткам,
    что усиливает образование инсулина и
    его секрецию. При гипогликемии ядра
    гипоталамуса снижают свою активность,
    и секреция инсулина уменьшается.

  • Гипергликемия
    непосредственно приводит в возбуждение
    рецепторный аппарат островков
    Лангерганса, что увеличивает секрецию
    инсулина. Глюкоза также непосредственно
    действует на бета-клетки, что ведет к
    высвобождению инсулина.

  • Глюкагон
    повышает количество глюкозы, что также
    ведет к усилению продукции инсулина.
    Аналогично действует гормоны
    надпочечников.

  • ВНС
    регулирует выработку инсулина
    посредством блуждающего и симпатического
    нервов. Блуждающий нерв стимулирует
    выделение инсулина, а симпатический
    тормозит.

  • Количество
    инсулина в крови определяется активностью
    фермента инсулиназы, который разрушает
    гормон. Наибольшее количество фермента
    находится в печени и мышцах. При
    однократном протекании крови через
    печень разрушается до 50 % находящегося
    в крови инсулина.

  • Важную
    роль в регуляции секреции инсулина
    выполняет гормон соматостатин, который
    образуется в ядрах гипоталамуса и
    дельта-клетках поджелудочной железы.
    Соматостатин тормозит секрецию
    инсулина.

  • Активность
    инсулина выражается в лабораторных и
    клинических единицах.

  • Глюкагон
    принимает участие в регуляции углеводного
    обмена, по действию на обмен углеводов
    он является антагонистом инсулина.
    Глюкагон расщепляет гликоген в печени
    до глюкозы, концентрация глюкозы в
    крови повышается. Глюкагон стимулирует
    расщепление жиров в жировой ткани.

  • Механизм
    действия глюкагона обусловлен его
    взаимодействием с особыми специфическими
    рецепторами, которые находятся на
    клеточной мембране. При связи глюкагона
    с ними увеличивается активность
    фермента аденилатциклазы и концентрации
    цАМФ, цАМФ способствует процессу
    гликогенолиза.

  • Регуляция
    секреции глюкагона.
    На образование глюкагона в альфа-клетках
    оказывает влияние уровень глюкозы в
    крови. При повышении глюкозы в крови
    происходит торможение секреции
    глюкагона, при понижении – увеличение.
    На образование глюкагона оказывает
    влияние и передняя доля гипофиза.

  • Гормон
    роста соматотропин
    повышает
    активность альфа-клеток. В противоположность
    этому гормон дельта-клетки – соматостатин
    тормозит образование и секрецию
    глюкагона, так как он блокирует вхождение
    в альфа-клетки ионов Ca, которые необходимы
    для образования и секреции глюкагона.

  • Липокаин
    способствует утилизации жиров за счет
    стимуляции образования липидов и
    окисления жирных кислот в печени, он
    предотвращает жировое перерождение
    печени.

  • Ваготонин
    повышает
    тонус блуждающих нервов, усиливает их
    активность.

  • Центропнеин
    участвует в возбуждении дыхательного
    центра, содействует расслаблению
    гладкой мускулатуры бронхов, повышает
    способность гемоглобина связывать
    кислород, улучшает транспорт кислорода.

  • Нарушение
    функции поджелудочной железы
    .

  • Уменьшение
    секреции инсулина приводит к развитию
    сахарного диабета, основными симптомами
    которого являются гипергликемия,
    глюкозурия, полиурия (до 10 л в сутки),
    полифагия (усиленный аппетит),
    полидиспепсия (повышенная жажда).

  • Увеличение
    сахара в крови у больных сахарным
    диабетом является результатом потери
    способности печени синтезировать
    гликоген из глюкозы, а клеток –
    утилизировать глюкозу. В мышцах также
    замедляется процесс образования и
    отложения гликогена.

  • У
    больных сахарным диабетом нарушаются
    все виды обмена.

  • Источник