Нарушения эндокринных функций поджелудочной железы

Функции поджелудочной железы

Добавлено: 07.11.2019

Добавил: СветланаСергеевна

Просмотров: 17847
Комментариев: 1

Поджелудочная железа – это орган пищеварительной системы, обеспечивающий переваривание питательных веществ – жиров, белков, углеводов. Вместе с тем, поджелудочная железа – это орган эндокринной системы. Она секретирует в кровь гормоны, регулирующие все виды обмена веществ. Таким образом, поджелудочная железа выполняет две функции – эндокринную и экзокринную.

Эндокринная функция поджелудочной железы

Поджелудочная железа секретирует в кровь пять гормонов, регулирующих в основном углеводный обмен. Эндокринная часть поджелудочной железы составляет не более 2% от всей массы органа. Она представлена островками Лангерганса – скоплениями клеток, которые находятся в окружении паренхимы поджелудочной железы.

Большинство островков Лангерганса сосредоточены в хвосте органа. По этой причине поражение хвоста поджелудочной железы воспалительным процессом часто приводит к недостаточности эндокринной функции органа. В островках Лангерганса находятся клетки разных типов, секретирующие разные гормоны. Больше всего в них содержится бета-клеток, вырабатывающих инсулин.

Функции гормонов поджелудочной железы

Поджелудочная железа вырабатывает пять гормонов. Два из них существенно влияют на обмен веществ. Это инсулин и глюкагон. Другие гомоны имеют меньшее значение для регуляции метаболизма, либо секретируются поджелудочной железой в малых количествах.

Инсулин
Анаболический гормон, основной функцией которого является транспорт сахара в клетки организма. Он снижает уровень глюкозы в крови за счет:

  • изменения проницаемости клеточных мембран для глюкозы
  • активации ферментов, обеспечивающих расщепление глюкозы
  • стимуляции превращения глюкозы в гликоген
  • стимуляции превращения глюкозы в жир
  • угнетения образования глюкозы в печени

Другие функции инсулина

  • стимулирует синтез белков и жиров
  • препятствует расщеплению триглицеридов, гликогена и белков

Глюкагон
Принимает важнейшее участие в углеводном обмене. Основная функция этого гормона поджелудочной железы – стимуляция гликогенолиза (процесс расщепления гликогена, в процессе которого в кровь выделяется глюкоза).

Кроме того, глюкагон:

  • активирует процесс образования глюкозы в печени
  • стимулирует расщепление жира
  • стимулирует синтез кетоновых тел

Физиологическое действие глюкагона:

  • повышает артериальное давление и частоту пульса
  • повышает силу сердечных сокращений
  • способствует расслаблению гладкой мускулатуры
  • усиливает кровоснабжение мышц
  • повышает секрецию адреналина и других катехоламинов

Соматостатин
Вырабатывается не только в поджелудочной железе, но и в гипоталамусе. Его единственная функция – это подавление секреции других биологически активных веществ:

  • серотонина
  • соматотропина
  • тиреотропного гормона
  • инсулина
  • глюкагона

Вазоактивный интестинальный пептид
Стимулирует перистальтику кишечника, увеличивает приток крови к органам ЖКТ, угнетает выработку соляной кислоты, усиливает выработку пепсиногена в желудке.

Панкреатический полипептид
Стимулирует желудочную секрецию. Подавляет внешнесекреторную функцию ПЖ.

Физиологическое действие глюкагона поджелудочной железы

Экзокринная функция ПЖ заключается в секреции панкреатического сока. По системе протоков он попадает в двенадцатиперстную кишку, где участвует в процессе пищеварения. Секрет поджелудочной железы содержит:

  • ферменты — расщепляют питательные вещества, поступающие в кишечник с едой
  • ионы бикарбоната — ощелачивают желудочный сок, поступающий в двенадцатиперстную кишку из желудка

Регуляция экзокринной функции поджелудочной железы осуществляется гормонами, которые вырабатываются в желудке и кишечнике:

  • холецистокинин
  • секретин
  • гастрин

Все эти вещества угнетают активность поджелудочной железы. Они вырабатываются в ответ на растяжение стенок желудка и кишечника. Их секрецию стимулирует панкреатический сок, попадающий в двенадцатиперстную кишку после приема пищи.

Функции ферментов поджелудочной железы

ПЖ вырабатывает ферменты, которые переваривают все виды питательных веществ – углеводы, белки и жиры.

1. Протеазы
Ферменты, расщепляющие белки. Учитывая, что разновидностей протеинов много, поджелудочная железа вырабатывает несколько видов протеолитических ферментов:

  • химотрипсин
  • эластаза
  • трипсин
  • карбоксипептидаза

2. Липаза
Этот фермент расщепляет жиры.

3. Амилаза
Фермент, расщепляющий полисахариды (сложные углеводы).

4. Нуклеазы
Несколько видов ферментов, которые расщепляют нуклеиновые кислоты (ДНК и РНК).

Нарушение функции поджелудочной железы

Некоторые болезни поджелудочной железы сопровождаются нарушением функции этого органа. Чаще всего это происходит при остром или хроническом панкреатите, когда вследствие воспалительного процесса уничтожается большая часть паренхимы поджелудочной железы. Экзокринная функция со временем нарушается у большинства больных хроническим панкреатитом. Эндокринная – приблизительно у четверти пациентов.

Нарушение экзокринной функции сопровождается расстройством пищеварения и диспепсическими симптомами. Для этого состояния характерны следующие признаки:

  • полифекалия
  • частый и жидкий стул
  • наличие жира в кале
  • вздутие кишечника
  • похудение

При нарушении эндокринной функции поджелудочной железы обычно развивается сахарный диабет. Он протекает легче, чем классический диабет первого типа, так как не все бета-клетки островков Лангерганса уничтожаются. Тем не менее, через несколько лет от начала заболевания у пациента обычно возникает потребность в инъекциях инсулина. Иногда удается нормализовать уровень глюкозы в крови при помощи диеты и сахароснижающих препаратов.

Источник

Поджелудочная
железа представляет собой орган с
двойной секрецией. Внешний секрет в
виде поджелудочного сока выводит­ся
в двенадцатиперстную кишку, а продукты
внутрисекреторной части, панкреатических
островков (Лангерганса), в виде гормонов
поступают в кровь. Островковый аппарат
по массе составляет око­ло 10 % железы
(лошади, крупный рогатый скот, свиньи)
и состо­ит из клеток четырех видов.
Бета-клетки — основные, продуциру­ют
инсулин, альфа-клетки вырабатывают
глюкагон, гамма- и дельта-клетки образуют
панкреатический гастрин. Среди этих
гормонов главное значение в физиологических
условиях и при па­тологических
состояниях имеет инсулин.

Читайте также:  Диета при болезнях печени и поджелудочной железы на каждый

Действие
циркулирующего в крови инсулина
определяется вза­имосвязью гормона
с рецептором на поверхности клетки,
после­дующим возникновением
многочисленных внутриклеточных сиг­налов
и проявлением их биологического эффекта.

Взаимодействие
молекулы инсулина с рецептором сказывается
на состоянии клеточной мембраны.
Развивается ее гиперполяри­зация
(кроме гепатоцита), выводятся ионы
водорода, поглощают­ся ионы натрия,
повышается рН клетки, ингибируется
кальцие­вый насос, что приводит к
задержке внутриклеточного кальция.
Клеткой поглощаются ионы калия,
усиливается транспорт глюко­зы.
Инсулин через 3,5-циклический
аденозинмонофосфат регулирует активность
клеточных ферментов путем их
высокоизбира­тельного фосфорилирования
или дефосфорилирования. Он акти­вирует
фосфатазу, которая способствует синтезу
гликогена и тор­мозит его распад.
Кроме того, инсулин одновременно влияет
на многие биохимические процессы,
облегчающие липогенез и тор­мозящие
глюконеогенез. Проявляется и его быстрый
эффект на синтез белка путем агрегации
рибосом в полисомы, противодей­ствия
протеолитическим системам.

Известно,
что антагонисты инсулина гликагон,
катехоламины, кортизол оказывают на
синтез белка тормозящее влияние.

Выявлен
митогенный эффект инсулина, реализуемый
благода­ря его метаболической
активности. Однако для стимуляции
син­теза ДНК требуются более высокие
концентрации гормона, чем для ускорения
транспорта глюкозы или других быстрых
метаболи­ческих проявлений его
действия.

Сахарный
диабет — это эндокринное заболевание,
в основе ко­торого лежит абсолютная
или относительная недостаточность
ин­сулина, приводящая к расстройствам
обменных процессов и фун­кций органов
и систем.

Диабет
может возникнуть под влиянием наследуемых
дефектов островкового аппарата, его
разрушения (панкреатит, травма),
пере­напряжения, избытка антагонистов
инсулина (катехоламины, глюкокортикоиды,
глюкагон). Развитие заболевания может
опреде­ляться и такими факторами, как
гиподинамия, ожирение, несба­лансированность
рациона, нервно-психическое перенапряжение.

Инсулин
относится к важнейшим гормонам,
регулирующим обмен веществ в организме.
Поэтому при его недостатке наруше­ны
метаболизм углеводов, жиров, белков,
процесс обмена энер­гии.

Нарушение
обмена углеводов связано с прекращением
поступ­ления глюкозы в инсулинзависимые
ткани и органы (мышцы, пе­чень, почки,
легкие), активации гликогенолиза в
печени и глюконеогенеза. Нарушения
углеводного обмена проявляются полиурией,
потерей организмом электролитов (натрия,
калия), повышен­ным аппетитом и жаждой.
Нарушается использование углеводов
для синтеза липидов. У здоровых животных
около 30 % поступаю­щей в организм
глюкозы трансформируется в жир, а у
больных диабетом — только около 3 %.

Нарушение
обмена жира выражено в ограничении
транспорта жирных кислот и кетокислот
в клетки, усиленном липолизе, уве­личении
синтеза холестерина, интенсификации
кетогенеза — из­быточного образования
ацетоуксусной, бета-оксимасляной кис­лот
и ацетона. Проявляются нарушения жирового
обмена липемией, гиперхолестеринемией,
гиперкетонемией, кетоацидозом, кетонурией,
потерей массы тела.

Нарушение
обмена белка связано с явлениями
катаболизма (преобладание распада над
синтезом), торможением синтеза
рибонуклеиновой кислоты, включением
аминокислот в глюконеогенез. Последствия
проявляются в нарушениях процессов
регенера­ции, угнетении гемопоэза,
иммунодефиците, возникновении ус­ловий
для сравнительно легкого инфицирования.

Нарушения
энергетического обмена обусловлены
образова­нием недоокисленных продуктов
(лактата, перувата), дефици­том
энергоемких соединений (макроэргических
фосфатов, в том числе АТФ), недоокислением
жиров, излишним образова­нием кетоновых
тел. Расстройства энергетического
обмена про­являются гипоксией,
дефицитом энергетического обеспечения
обмена веществ, особенно в жизненно
важных органах, ацидо­зом, лактацидемией,
снижением адаптационных возможностей
организма.

Расстройства
обмена веществ, обусловленные
недостаточнос­тью инсулина, могут
клинически проявляться разнообразными
признаками. Для сахарного диабета
характерна ангиопатия — по­ражение
мелких артериальных сосудов с нарушениями
микроцир­куляции и трофическими
расстройствами вплоть до гангрены.
Развивающийся атеросклероз сопровождается
гипертензией, ишемизацией сердечной
мышцы вплоть до инфаркта миокарда.
Пора­жение нервной системы при диабете
проявляется энцефалопати­ей, снижением
чувствительности, трофическими
расстройствами. Диабетическая нефропатия
(гломерулосклероз) сопровождается
отеками, протеинурией. Поражения
костно-мышечной системы складываются
из остеопороза и мышечной дистрофии.
Могут быть поражены и органы зрения как
результат диабетической микроангиопатии.
Это одна из причин слепоты.

Соседние файлы в папке Учебник

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Поджелудочная железа расположена на задней стенке брюшной полости, позади желудка, на уровне L1-L2 и простирается от двенадцатиперстной кишки до ворот селезенки. Длина ее составляет около 15 см, масса — около 100 г. В поджелудочной железе различают головку, располагающуюся в дуге двенадцатиперстной кишки, тело и хвост, достигающий ворот селезенки и лежащий ретроперитонеально. Кровоснабжение поджелудочной железы осуществляется селезеночной и верхней мезентериальной артерией. Венозная кровь поступает в селезеночную и верхнюю мезентериальную вены. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами, терминальные волокна которых контактируют с клеточной мембраной островковых клеток.

Читайте также:  Если раздражение поджелудочной железы

Поджелудочная железа обладает экзокринной и эндокринной функцией. Последняя осуществляется островками Лангерганса, которые составляют около 1-3 % массы железы (от 1 до 1,5 млн). Диаметр каждого — около 150 мкм. В одном островке содержится от 80 до 200 клеток. Различают несколько их видов по способности секретировать полипептидные гормоны. А-клетки продуцируют глюкагон, В-клетки — инсулин, D-клетки — соматостатин. Обнаружен еще ряд островковых клеток, которые предположительно могут продуцировать вазоактивный интерстициальный полипептид (ВИП), гастроинтестинальный пептид (ГИП) и панкреатический полипептид. В-клетки локализуются в центре островка, а остальные — по его периферии. Основную массу — 60 % клеток — составляют В-клетки, 25 % — А-клетки, 10 % — D-клетки, остальные — 5 % массы.

Инсулин образуется в В-клетках из его предшественника — проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Проинсулин состоит из 3 пептидных цепей (А, В и С). А- и В-цепочки соединены дисульфидными мостиками, С-пептид связывает А- и В-цепи. Молекулярная масса проинсулина — 9000 дальтон. Синтезированный проинсулин поступает в аппарат Гольджи, где под влиянием протеолитических ферментов расщепляется на молекулу С-пептида с молекулярной массой 3000 дальтон и молекулу инсулина с молекулярной массой 6000 дальтон. А-цепь инсулина состоит из 21 аминокислотного остатка, В-цепь — из 30, а С-пептид — из 27-33. Предшественником проинсулина в процессе его биосинтеза является препроинсулин, который отличается от первого наличием еще одной пептидной цепочки, состоящей из 23 аминокислот и присоединяющейся к свободному концу В-цепи. Молекулярная масса препроинсулина — 11 500 дальтон. Он быстро превращается в проинсулин на полисомах. Из аппарата Гольджи (пластинчатый комплекс) инсулин, С-пептид и частично проинсулин поступают в везикулы, где первый связывается с цинком и депонируется в кристаллическом состоянии. Под влиянием различных стимулов везикулы продвигаются к цитоплазматической мембране и путем эмиоцитоза освобождают инсулин в растворенном виде в прекапиллярное пространство.

Самый мощный стимулятор его секреции — глюкоза, которая взаимодействует с рецепторами цитоплазматическои мембраны. Ответ инсулина на ее воздействие является двухфазным: первая фаза — быстрая — соответствует выбросу запасов синтезированного инсулина (1-й пул), вторая — медленная — характеризует скорость его синтеза (2-й пул). Сигнал от цитоплазматического фермента — аденилатциклазы — передается на систему цАМФ, мобилизующую из митохондрий кальций, который принимает участие в освобождении инсулина. Кроме глюкозы, стимулирующим влиянием на освобождение и секрецию инсулина обладают аминокислоты (аргинин, лейцин), глюкагон, гастрин, секретин, панкреозимин, желудочный ингибирующии полипептид, неиротензин, бомбезин, сульфаниламидные препараты, бета-адреностимуляторы, глюкокортикоиды, СТГ, АКТГ. Подавляют секрецию и освобождение инсулина гипогликемия, соматостатин, никотиновая кислота, диазоксид, альфа-адреностимуляция, фенитоин, фенотиазины.

Инсулин в крови находится в свободном (иммунореактивный инсулин, ИРИ) и связанном с белками плазмы состоянии. Деградация инсулина происходит в печени (до 80 %), почках и жировой ткани под влиянием глютатионтрансферазы и глютатионредуктазы (в печени), инсулиназы (в почках), протеолитических ферментов (в жировой ткани). Проинсулин и С-пептид также подвергаются деградации в печени, но значительно медленнее.

Инсулин дает множественный эффект на инсулинзависимые ткани (печень, мышцы, жировая ткань). На почечную и нервную ткани, хрусталик, эритроциты он не оказывает непосредственного действия. Инсулин является анаболическим гормоном, усиливающим синтез углеводов, белков, нуклеиновых кислот и жира. Его влияние на углеводный обмен выражается в увеличении транспорта глюкозы в клетки инсулинзависимых тканей, стимуляции синтеза гликогена в печени и подавлении глюконеогенеза, и гликогенолиза, что вызывает понижение уровня сахара в крови. Влияние инсулина на белковый обмен выражается в стимуляции транспорта аминокислот через цитоплазматическую мембрану клеток, синтеза белка и торможения его распада. Его участие в жировом обмене характеризуется включением жирных кислот в триглицериды жировой ткани, стимуляцией синтеза липидов и подавлением липолиза.

Биологический эффект инсулина обусловлен его способностью связываться со специфическими рецепторами клеточной цитоплазматическои мембраны. После соединения с ними сигнал через встроенный в оболочку клетки фермент — аденилатциклазу — передается на систему цАМФ, которая при участии кальция и магния регулирует синтез белка и утилизацию глюкозы.

Базальная концентрация инсулина, определяемая радиоиммунологически, составляет у здоровых 15-20 мкЕД/мл. После пероральной нагрузки глюкозой (100 г) уровень его через 1 ч повышается в 5-10 раз по сравнению с исходным. Скорость секреции инсулина натощак составляет 0,5-1 ЕД/ч, а после приема пищи увеличивается до 2,5-5 ЕД/ч. Секрецию инсулина увеличивает парасимпатическая и уменьшает симпатическая стимуляция.

Глюкагон является одноцепочечным полипептидом с молекулярной массой 3485 дальтон. Он состоит из 29 аминокислотных остатков. Расщепляется в организме при помощи протеолитических ферментов. Секрецию глюкагона регулируют глюкоза, аминокислоты, гастроинтестинальные гормоны и симпатическая нервная система. Ее усиливают гипогликемия, аргинин, гастроинтестинальные гормоны, особенно панкреозимин, факторы, стимулирующие симпатическую нервную систему (физическая нагрузка и др.), уменьшение содержания в крови СЖК.

Читайте также:  Тыква польза для поджелудочной железы

Угнетают продукцию глюкагона соматостатин, гипергликемия, повышенный уровень СЖК в крови. Содержание глюкагона в крови повышается при декомпенси-рованном сахарном диабете, глюкагономе. Период полураспада глюкагона составляет 10 мин. Инактивируется он преимущественно в печени и почках путем расщепления на неактивные фрагменты под влиянием ферментов карбоксипептидазы, трипсина, хемотрипсина и др.

Основной механизм действия глюкагона характеризуется увеличением продукции глюкозы печенью путем стимуляции его распада и активации глюконеогенеза. Глюкагон связывается с рецепторами мембраны гепатоцитов и активирует фермент аденилатциклазу, которая стимулирует образование цАМФ. При этом происходит накопление активной формы фосфорилазы, участвующей в процессе глюконеогенеза. Кроме того, подавляется образование ключевых гликолитических ферментов и стимулируется выделение энзимов, участвующих в процессе глюконеогенеза. Другая глюкагонзависимая ткань — жировая. Связываясь с рецепторами адипоцитов, глюкагон способствует гидролизу триглицеридов с образованием глицерина и СЖК. Этот эффект осуществляется путем стимуляции цАМФ и активации гормоночувствительной липазы. Усиление липолиза сопровождается повышением в крови СЖК, включением их в печень и образованием кетокислот. Глюкагон стимулирует гликогенолиз в сердечной мышце, что способствует увеличению сердечного выброса, расширению артериол и уменьшению общего периферического сопротивления, уменьшает агрегацию тромбоцитов, секрецию гастри-на, панкреозимина и панкреатических ферментов. Образование инсулина, соматотропного гормона, кальцитонина, катехоламинов, выделение жидкости и электролитов с мочой под влиянием глюкагона увеличиваются. Его базальный уровень в плазме крови составляет 50-70 пг/мл. После приема белковой пищи, во время голодания, при хронических заболеваниях печени, хронической почечной недостаточности, глюкагономе содержание глюкагона увеличивается.

Соматостатин представляет собой тетрадекапептид с молекулярной массой 1600 дальтон, состоящий из 13 аминокислотных остатков с одним дисульфидным мостиком. Впервые соматостатин был обнаружен в переднем гипоталамусе, а затем — в нервных окончаниях, синаптических пузырьках, поджелудочной железе, желудочно-кишечном тракте, щитовидной железе, сетчатке. Наибольшее количество гормона образуется в переднем гипоталамусе и D-клетках поджелудочной железы. Биологическая роль соматостатина заключается в подавлении секреции соматотропного гормона, АКТГ, ТТГ, гастрина, глюкагона, инсулина, ренина, секретина, вазоактивного желудочного пептида (ВЖП), желудочного сока, панкреатических ферментов и электролитов. Он понижает абсорбцию ксилозы, сократимость желчного пузыря, кровоток внутренних органов (на 30-40 %), перистальтику кишечника, а также уменьшает освобождение ацетилхолина из нервных окончаний и электровозбудимость нервов. Период полураспада парентерально введенного соматостатина составляет 1-2 мин, что позволяет рассматривать его как гормон и нейротрансмиттер. Многие эффекты соматостатина опосредуются через его влияние на вышеперечисленные органы и ткани. Механизм же его действия на клеточном уровне пока неясен. Содержание соматостатина в плазме крови здоровых лиц составляет 10-25 пг/л и повышается у больных сахарным диабетом I типа, акромегалией и при D-клеточной опухоли поджелудочной железы (соматостатиноме).

Роль инсулина, глюкагона и соматостатина в гомеостазе. В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона — повышается, особенно на 3-5-й день голодания (примерно в 3-5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и увеличивает процесс глюконеогенеза, что способствует пополнению запасов гликогена в печени. Таким образом, постоянный уровень глюкозы в крови, необходимый для функционирования мозга, эритроцитов, мозгового слоя почек, поддерживается за счет усиления глюконеогенеза, гликогенолиза, подавления утилизации глюкозы другими тканями под влиянием увеличения секреции глюкагона и уменьшения потребления глюкозы инсулинзависимыми тканями в результате снижения продукции Инсулина. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Гиперпродукция глюкагона стимулирует липолиз, что повышает в крови уровень СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот, образующихся во время липолиза.

После приема пищи (углеводистой) наблюдаются быстрое повышение уровня инсулина и уменьшение содержания глюкагона в крови. Первый вызывает ускорение синтеза гликогена и утилизацию глюкозы инсулинзависимыми тканями. Белковая пища (например, 200 г мяса) стимулирует резкий подъем концентрации в крови глюкагона (на 50-100 %) и незначительный — инсулина, что способствует усилению глюконеогенеза и увеличению продукции глюкозы печенью.

trusted-source[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

Источник