Назовите эндопептидазы сока поджелудочной железы

За сутки образуется 1,5-2,5 л панкреатического сока, рН — 7,5-8,8. Высокое содержание ионов бикарбоната — обеспечивают нейтрализацию кислого желудочного содержимого.

Специфические вещества поджелудочного сока:

1. Панкреатический калликреин (активирует моторику, расширяет сосуды).

2. Ингибитор трипсина (блокирует активацию трипсина внутри железы).

Панкреатический сок содержитвсе группы ферментов.

Протеазыподжелудочного сока(эндо- и экзопептидазы):

а). Эндопептидазы расщепляют внутренние пептидные связи.

1. Трипсин — расщепляет связи между аргинином и лизином, активируется энтерокиназой и аутокаталитически.

2. Химотрипсин — расщепляет связи тирозина, триптофана, фенилаланина , активируется трипсином.

3. Панкреопептидаза Е (эластаза) — расщепляет эластические белки.

б ). Экзопептидазы (карбокси- и аминопептидазы) расщепляют конечные связи, освобождая аминокислоты с «С»-конца пептида (СООН) и с » N «-конца пептида (NH3).

Липазыподжелудочного сока:

Липаза поджелудочной железы вырабатывается в активном состоянии, действует на эмульгированные желчью жиры, расщепляя их до глицерина и ВЖК.

Фосфолипаза А вырабатывается в неактивном состоянии, активируется трипсином,расщепляет фосфолипиды до жирных кислот.

Карбогидразыподжелудочного сока: альфа-амилаза, альфа-глюкозидаза.

Нуклеазы(класс фосфодиэстераз):рибонуклеаза, дезоксинуклеаза.

Желчь :Объем суточной секреции — 0,5-1 л., рН — 7,8-8,6.

1. Желчь не содержит ферментов.

2. Специфические вещества: желчные кислоты и желчные пигменты:

билирубин — основной пигмент у человека, придает коричневую окраску;

— биливердин — в основном в желчи травоядных животных (зеленый цвет).

Желчные кислоты,играют в пищеварении ведущую роль:

— эмульгируют жиры,

усиливают активность поджелудочной липазы,

— обеспечивают всасывание нерастворимых в воде веществ (ЖК, холестерин, витамины (А, D , Е, К) и соли Са+2),

— способствуют ресинтезу триглицеридов в энтероцитах.

Сок тонкой кишки — 2,5 л. в сутки, рН — 7,2-7,5.

Специфическими веществами кишечного сока являются щелочные продукты.

Ферменты : всего – более 20 ферментов. Наиболее значимые:

Протеазы кишечного сока:

1. Энтерокиназа — фермент, активирующий трипсиноген.

2. Три- и дипептидазы(эрипсины)- расщепляют пептиды на аминокислоты.

Липазысодержатся в незначительном количестве (липаза, фосфолипаза).

Карбогидразыкишечного сока: альфа-глюкозидаза, бета-галактозидаза ( расщепляет молочный сахар до глюкозы и галактозы), сахараза, лактаза, гамма-амилаза.

Сок толстой кишки —рН сока — 8,5-9,0.

Специфические вещества слизь, обеспечивает формирование каловых масс.

Собственных ферментов сок толстой кишки не содержит.

Состав сока толстой кишки во многом зависит от его микрофлоры,которая:

1. Предохраняет организм хозяина от внедрения и размножения патогенных микроорганизмов (предотвращает процессы гниения (белки) и брожения (углеводы)).

2. Участвует в разложении компонентов пищеварительных секретов (ферментов, желчных кислот иклетчатки).

3. Способна синтезировать витамин К и некоторые витамины группы В.

Дата добавления: 2015-03-27; просмотров: 1038; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10197 — | 7584 — или читать все…

Читайте также:

Источник

В
пищевых продуктах содержание свободных
аминокислот очень мало. Подавляющее их
количество входит в состав белков,
которые гидролизуются в ЖКТ под действием
ферментов протеаз (пептидщцролаз).
Субстратная специфичность этих ферментов
заключается в том, что каждый из них с
наибольшей скоростью расщепляет
пептидные связи, образованные определёнными
аминокислотами. Протеазы, гидролизующие
пептидные связи внутри белковой молекулы,
относят к группе эндопептидаз. Ферменты,
относящиеся к группе экзопептидаз,
гидролизуют пептидную связь, образованную
концевыми аминокислотами. Под действием
всех протеаз ЖКТ белки пищи распадаются
на отдельные аминокислоты, которые
затем поступают в клетки тканей.

Переваривание
белков в желудке

Желудочный
сок — продукт нескольких типов клеток.
Обкладочные (париетальные) клетки стенок
желудка образуют соляную кислоту,
главные клетки секретируют пепсиноген.
Добавочные и другие клетки эпителия
желудка выделяют муцинсодержащую слизь.
Париетальные клетки секретируют в
полость желудка также гликопротеин,
который называют «внутренним фактором»
(фактором Касла). Этот белок связывает
«внешний фактор» — витамин В12,
предотвращает его разрушение и
способствует всасыванию.

Образование
и роль соляной кислоты
.
Основная
пищеварительная функция желудка
заключается в том, что в нём начинается
переваривание белка. Существенную роль
в этом процессе играет соляная кислота.
Белки, поступающие в желудок, стимулируют
выделение гистамина и
группы белковых гормонов —гастринов которые,
в свою очередь, вызывают секрецию НСI и
профермента — пепсиногена. Источником
Н+ является
Н2СО3,
которая образуется в обкладочных клетках
желудка из СО2,
диффундирующего из крови, и Н2О
под действием фермента карбоангидразы
(карбонатдегидра-тазы):

Н2О
+ СО
2 
Н
2СО3 
НСО
3 +
H
+

Диссоциация
Н2СО3 приводит
к образованию бикарбоната, который с
участием специальных белков выделяется
в плазму в обмен на С1-,
и ионов Н+,
которые поступают в просвет желудка
путём активного транспорта, катализируемого
мембранной Н+/К+-АТФ-азой.
При этом концентрация протонов в просвете
желудка увеличивается в 106 раз.
Ионы Сl- поступают
в просвет желудка через хлоридный канал.
Концентрация НСl в желудочном соке может
достигать 0,16 М, за счёт чего значение
рН снижается до 1,0-2,0. Приём белковой
пищи часто сопровождается выделением
щелочной мочи за счёт секреции большого
количества бикарбоната в процессе
образования НСl. Под действием НСl
происходит денатурация белков пищи, не
подвергшихся термической обработке,
что увеличивает доступность пептидных
связей для протеаз. НСl обладает
бактерицидным действием и препятствует
попаданию патогенных бактерий в кишечник.
Кроме того, соляная кислота активирует
пепсиноген и создаёт оптимум рН для
действия пепсина.

Механизм
активации пепсина
.
Под
действием гастринов в главных клетках
желудочных желёз стимулируются синтез
и секреция пепсиногена — неактивной
формы пепсина. Пепсиноген — белок,
состоящий из одной полипептидной цепи
с молекулярной массой 40 кД. Под действием
НСl он превращается в активный пепсин
(молекулярная масса 32,7 кД) с оптимумом
рН 1,0-2,5. В процессе активации в результате
частичного протеолиза от N-конца молекулы
пепсиногена отщепляются 42 аминокислотных
остатка, которые содержат почти все
положительно заряженные аминокислоты,
имеющиеся в пепсиногене. Таким образом,
в активном пепсине преобладающими
оказываются отрицательно заряженные
аминокислоты, которые участвуют в
конформационных перестройках молекулы
и формировании активного центра.
Образовавшиеся под действием НСl активные
молекулы пепсина быстро активируют
остальные молекулы пепсиногена
(аутокатализ). Пепсин в первую очередь
гидролизует пептидные связи в белках,
образованные ароматическими аминокислотами
(фенилаланин, триптофан, тирозин) и
несколько медленнее — образованные
лейцином и дикарбоновыми аминокислотами.
Пепсин — эндопептидаза, поэтому в
результате его действия в желудке
образуются более короткие пептиды, но
не свободные аминокислоты.

Читайте также:  Акупунктура точки поджелудочной железы

Переваривание
белков в кишечнике
.

Желудочное
содержимое (химус) в процессе переваривания
поступает в двенадцатиперстную кишку.
Низкое значение рН химуса вызывает в
кишечнике выделение белкового гормона
секретина, поступающего в кровь. Этот
гормон в свою очередь стимулирует
выделение из поджелудочной железы в
тонкий кишечник панкреатического сока,
содержащего НСО3-,
что приводит к нейтрализации НСl
желудочного сока и ингибированию
пепсина. В результате рН резко возрастает
от 1,5-2,0 до ∼7,0.
Поступление пептидов в тонкий кишечник
вызывает секрецию другого белкового
гормона — холецистокинина, который
стимулирует выделение панкреатических
ферментов с оптимумом рН 7,5-8,0. Под
действием ферментов поджелудочной
железы и клеток кишечника завершается
переваривание белков.

Активация
панкреатических ферментов
В
поджелудочной железе синтезируются
проферменты ряда протеаз: трипсиноген,
химотрипсиноген, проэластаза,
прокарбоксипептидазы А и В. В кишечнике
они путём частичного протеолиза
превращаются в активные ферменты
трипсин, химотрипсин, эластазу и
карбоксипептидазы А и В.

Активация
трипсиногена
 происходит
под действием фермента эпителия кишечника
энтеропептидазы. Этот фермент отщепляет
с N-конца молекулы трипсиногена гексапептид
Вал-(Асп)4-Лиз.
Изменение конформации оставшейся части
полипептидной цепи приводит к формированию
активного центра, и образуется активный
трипсин. Последовательность Вал-(Асп)4-Лиз
присуща большинству известных
трипсиноге-нов разных организмов — от
рыб до человека.

Образовавшийся
трипсин активирует
химотрипсиноген
, из
которого получается несколько активных
ферментов (рис. 9-3). Химотрипсиноген
состоит из одной полипептидной цепи,
содержащей 245 аминокислотных остатков
и пяти дисульфидных мостиков. Под
действием трипсина расщепляется
пептидная связь между 15-й и 16-й
аминокислотами, в результате чего
образуется активный π-химотрипсин.
Затем под действием π-химотрипсина
отщепляется дипептид сер(14)-арг(15), что
приводит к образованию δ-химотрипсина.
Отщепление дипептида тре(147)-арг(148)
завершает образование стабильной формы
активного фермента — α-химотрипсина,
который состоит из трёх полипептидных
цепей, соединённых дисульфидными
мостиками. Остальные проферменты
панкреатических протеаз (проэластаза
и прокарбоксипептидазы А и В) также
активируются трипсином путём частичного
протеолиза. В результате образуются
активные ферменты — эластаза и
карбокси-пептидазы А и В.

Специфичность
действия протеаз
.
Трипсин
преимущественно гидролизует пептидные
связи, образованные карбоксильными
группами аргинина и лизина. Химотрипсины
наиболее активны в отношении пептидных
связей, образованных карбоксильными
группами ароматических аминокислот
(Фен, Тир, Три). Карбоксипептидазы А и В
— цинксодержащие ферменты, отщепляют
С-концевые остатки аминокислот. Причём
карбоксипептидаза А отщепляет
преимущественно аминокислоты, содержащие
ароматические или гидрофобные радикалы,
а карбоксипептидаза В — остатки аргинина
и лизина. Последний этап переваривания
— гидролиз небольших пептидов, происходит
под действием ферментов аминопептидаз
и дипептидаз, которые синтезируются
клетками тонкого кишечника в активной
форме.

  • Аминопептидазы последовательно
    отщепляют N-концевые аминокислоты
    пептидной цепи. Наиболее известна
    лейцинаминопептидаза — Zn2+-
    или Мn2+-содержащий
    фермент, несмотря на название, обладающий
    широкой специфичностью по отношению
    к N-концевым аминокислотам.

  • Дипептидазы расщепляют
    дипептиды на аминокислоты, но не
    действуют на трипептиды.

В результате последовательного действия
всех пищеварительных протеаз большинство
пищевых белков расщепляется до свободных
аминокислот.

Экзопептидазы(экзопротеиназы)
—ферменты,
гидролизующие белки, отщепляяаминокислотыот
концапептида:карбоксипептидазы—
от C-конца,аминопептидазы—
от N-конца,дипептидазырасщепляют
дипептиды. Экзопептидазы синтезируются
в клеткахтонкого
кишечника(аминопептидазы,
дипептидазы) и вподжелудочной
железе(карбоксипептидаза).
Функционируют эти ферменты внутриклеточно
в кишечномэпителиии,
в небольшом количестве, в просветекишечника.

Эндопептидазы(эндопротеиназы) —протеолитические
ферменты(пепсин,трипсин,химотрипсин),
расщепляющиепептидные
связивнутрипептидной
цепи. С наибольшей скоростью
ими гидролизуются связи, образованные
определённымиаминокислотами.
Эндопептидазы синтезируются в
видепроферментов,
активируемых затем при помощи
избирательногопротеолиза.
Таким образом клетки, секретирующие
эти ферменты защищают собственные белки
от разрушения. От действия ферментовклеточную
мембрануклеток животных
защищает также поверхностный
слойолигосахаридов—гликокаликс,
а вкишечникеижелудке—
слой слизи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Покинув желудок, пища подвергается действию панкреатического сока, кишечного сока и желчи.

Сок поджелудочной железы содержит проферменты – трипсиноген, химотрипсиноген, прокарбоксипептидазы, проэластазу. Проферменты в просвете кишечника активируются, соответственно, до трипсина, химотрипсина, карбоксипептидаз и эластазы способом ограниченного протеолиза. Указанные ферменты осуществляют основную работу по перевариванию белков.

В кишечном соке активны дипептидазы и аминопептидазы. Они заканчивают переваривание белков.

Трипсин, химотрипсин, эластаза являются эндопептидазами. Карбоксипептидазы и аминопептидазы – экзопептидазы.

Регуляция кишечного пищеварения

В кишечнике под влиянием соляной кислоты, поступающей из желудка в составе пищевого комка, начинается секреция гормона секретина, который с током крови достигает поджелудочной железы и стимулирует выделение жидкой части панкреатического сока, богатого карбонат-ионами (HCO3–). В результате рН химуса в тонкой кишке повышается до 7,2-7,5 или, при усиленной секреции, до 8,5.

Благодаря работе желудочных ферментов в химусе имеется некоторое количество аминокислот, вызывающих освобождение холецистокинина-панкреозимина. Он стимулирует секрецию другой, богатой проферментами, части поджелудочного сока, и секрецию желчи.

Нейтрализация кислого химуса в двенадцатиперстной кишке происходит также при участии желчи. Формирование желчи (холерез) идет непрерывно, не прекращаясь даже при голодании.

Трипсин

Синтезируемый в поджелудочной железе трипсиноген в двенадцатиперстной кишке подвергается частичному протеолизу под действием фермента энтеропептидазы, секретируемой клетками кишечного эпителия. От профермента отделяется гексапептид (Вал-Асп-Асп-Асп-Асп-Лиз), что приводит к формированию активного центра трипсина.

Трипсин специфичен к пептидным связям, образованным с участием карбоксильных групп лизина и аргинина, может осуществлять аутокатализ, т.е. превращение последующих молекул трипсиногена в трипсин, также он активирует остальные протеолитические ферменты панкреатического сока – химотрипсиноген, проэластазу, прокарбоксипептидазу.

Параллельно трипсин участвует в переваривании пищевых липидов, активируя фермент переваривания фосфолипидов – фосфолипазу А2, и колипазу фермента липазы, отвечающей за гидролиз триацилглицеролов.

В таких продуктах, как бобовые (соя, горох, фасоль) содержится пептид – ингибитор трипсина, снижающий переваривание белков этих продуктов в сыром, термически необработанном, виде.

Химотрипсин

Образуется из химотрипсиногена при участии трипсина, который расщепляет пептидную связь между аргинином-15 и изолейцином-16, и уже активны промежуточных форм химотрипсина, которые выстригают два дипептида из цепи профермента. Три образованных фрагмента удерживаются друг с другом посредством дисульфидных связей.

Фермент специфичен к пептидным связям, образованным с участием карбоксильных групп фенилаланина, тирозина и триптофана.

Эластаза

Активируется в просвете кишечника трипсином из проэластазы. Гидролизует связи, образованные карбоксильными группами малых аминокислот аланина, пролина, глицина.

Карбоксипептидазы

Карбоксипептидазы являются экзопептидазами, т.е. гидролизуют пептидные связи с С-конца пептидной цепи. Различают два типа карбоксипептидаз – карбоксипептидазы А и карбоксипептидазы В. Карбоксипептидазы А отщепляют с С-конца остатки алифатических и ароматических аминокислот, карбоксипептидазы В – остатки лизина и аргинина.

Читайте также:  Вылечить рак поджелудочной железы с метастазами в печень

Аминопептидазы

Являясь экзопептидазами, аминопептидазы отщепляют N-концевые аминокислоты. Важными представителями являются аланинаминопептидаза и лейцинаминопептидаза, обладающие широкой специфичностью. Например, лейцинаминопептидаза отщепляет с N-конца белка не только лейцин, но и ароматические аминокислоты и гистидин.

Дипептидазы

Дипептидазы гидролизуют дипептиды, в изобилии образующиеся в кишечнике при работе других ферментов.

Лизосомы энтероцитов

Малое количество дипептидов и пептидов пиноцитозом попадают в энтероциты и здесь гидролизуются лизосомальными протеазами.

При заболеваниях ЖКТ и нарушении переваривания, при недостаточности соляной кислоты, при желудочном или кишечном кровотечении, при высокобелковой диете часть пептидов, не успевая расщепиться, достигает толстого кишечника и потребляется живущими там микроорганизмами – развивается  гниение белков в кишечнике.

В действительности же дела с перевариванием белков в ЖКТ обстоят не совсем так: постепенно в фармакологии накапливаются факты об эффективности пептидных лекарственных препаратов при их пероральном применении. Однако делать определенные выводы никто не спешит.

Источник

    Об использовании экзопептидаз, таких как аминопептидаза и карбоксипептидаза, для определения аминокислотной последовательности вблизи N- и С-концов белков говорилось в разд. 23.3.4. Эндопептидазы являются протеолитическими ферментами, которые избирательно расщепляют пептидные связи в точках, удален ных от концов белковой молекулы. Эндопептидазы сильно различаются по своей специфичности. Обычно сами аминокислотные остатки с любой стороны расщепляющейся пептидной связи являются наиболее важными детерминантами специфичности протеолитических ферментов. Так, трипсин разрывает пептидные связи, в образовании которых участвует карбонильная группа остатков Arg или Lys схемы (25), (26) . [c.274]

    Особенно ощутимые успехи в исследовании движущих сил ферментативного катализа были достигнуты в случае химотрипсина . Химотрипсин — это эндопептидаза, которая в белках расщепляет пептидные связи, образованные карбонильной группой фенилаланина, тирозина и триптофана [4, 5]  [c.126]

    Рассмотрим механизм действия фермента и основные стадии ферментативного катализа на примере очень хорошо изученного фермента, химо-трипсина. Это — гидролаза, а точнее — эндопептидаза, расщепляющая такие пептидные связи внутри полипептидной цепи белка, в образовании которых участвует карбоксильная группа ароматических аминокислот. [c.30]

    Дальнейшее превращение белков пищи осуществляется в тонкой кишке, где на белки действуют ферменты панкреатического и кишечного соков. Трипсин и химотрипсин действуют на белки аналогично пепсину, разрывают другие внутренние пептидные связи оба фермента наиболее активны в слабощелочной среде (pH 7,2—7,8). Благодаря гидролитическому действию на белки всех трех эндопептидаз (пепсин, трипсин, химотрипсин) образуются различной длины пептиды и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов—пептидаз. Помимо панкреатической карбоксипептидазы, на пептиды действуют кишечная аминопептидаза и разнообразные дипептидазы. Эта группа ферментов относится к экзопептидазам и катализирует гидролиз пептидной связи по схеме  [c.425]

    Одно из видоизменений белковых гидролизатов, наиболее полно отраженное в научной литературе, достигается в результате реакции пластеина после протеолиза. Растворимая часть гидролизата после гидролиза регенерируется посредством центрифугирования, диализа или ультрафильтрацией, что позволяет концентрировать до 50 % твердого вещества. В этом случае добавление эндопептидазы, такой, как папаин или химотрипсин, приводит к некоторой конденсации пептидов и образованию геля. Природа этого геля полностью пока не выяснена. [c.610]

    Проведите различие между а) гидролазами и гидратазами, б) фос-фатазами и фосфорилазами, в) экзопептидазами и эндопептидазами, г) пепсином и катепсином, д) трипсином и химотрипсином, а) трипсином и трипсиногеном. [c.180]

    Карбоксипептидаза А, свободная от примесей аминокислот и эндопептидаз. [c.155]

    Если препарат карбоксипептидазы уже освобожден от примеси эндопептидаз, обработку диизопропилфторфосфатом следует опустить. В этом случае кристаллы карбоксипептидазы А (5 мг) суспендируют в [c.155]

    Эндопептидазы локус Ер-Н на хромосоме 1 [63  [c.55]

    Ферментативные методы гидролиза особенно ценны благодаря присущей им во многих случаях специфичности. Трипсин, представляющий собой так называемую эндопептидазу, быстро расщепляет пептидные связи лишь в том случае, если карбонильная группа расщепляемой амидной связи принадлежит одной из основных аминокислот — лизину или аргинину. Таким образом, трипсин превращает белок в сравнительно малое число триптических пептидов, которые можно разделить и охарактеризовать. Трипсин расщепляет только денатурированные белки, причем для получения хороших результатов нужно предварительно разорвать дисульфидные мостики. [c.166]

    ПРОНАЗА КОМПЛЕКС, частично очищенная от балластных белков смесь протеолитических ферментов, продуцируемых штаммом Streptomy es griseus К-1 содержит эндопептидазы, аминопептидазы и карбоксипептидазы. Осн. компоненты П.к.-сериновые протеиназы А-Е (содержат в активном центре остаток серина). Ферменты П. к. стабилизируются добавлением Са » . Мол, массы компонентов П.к. 16-27 тыс. для протеиназ А, В, D, Е установлена первичная структура, а для А и В-пространств, строение. [c.101]

    Различают экзопептидазы, расщепляющие связи вблизи С- или N-конца цепи (соотв. карбоксипептидазы и аминопептидазы) и эндопептидазы (протеиназы), гидролизующие связи, удаленные от концевых остатков (напр., трипсин). Лишь ограниченное число П. ф. обладает строгой субстратной специфичностью. К ним относят, напр., ренин, гидролизующий связь между остатками лейцииа в положениях 10 и 11 в ангиотензиногене (предшественник ангиотензина пептида, участвующего в регуляции кровяного давления), или энтеропептидазу отщепляющую N-концевой гексапеп- [c.112]

    ЭЛАСТАЗА, фермент класса гидролаз, относится к эндопептидазам. Мол. масса бычьей Э. 25 ООО, р/ 9,5, оптим. каталитич. активность при pH 8,5—9,0. Образуется в поджелудочной железе в виде предшественника (проэласта.чы), встречается также в культуральной жидкости нек-рых микроорганизмов. Катализирует гидролиз белков и непти- [c.695]

    Расщепление белков под действием карбоксипептидаз, а также изотиоцианатом аммония используют и с целью определения С-конце-вой последовательности белков и пептидов. Обычно перед использованием препараты карбоксипептидаз тщательно освобождают от примесей свободных аминокислот, а также производят специальную обработку с целью ингибирования эндопептидаз. [c.154]

    Белки разрушаются при действии на них некоторых ферментов, причем различные группы ферментов расщепляют полипептидную цепь по разньш участкам. Эндопептидазы являются гидролазами, расщепляющими пептидную связь внутри полипептидной цепи, экзопептидазы расщепляют ее на конце белковой молекулы, аминопептидазы атакуют аминоконец полипептидной цепи белка, а карбоксипептидазы — ее карбоксильный конец. [c.275]

    В соке поджелудочной железы помимо трипсиногена и химотрипси-ногена содержатся другие зимогены, которые превращаются в ферменты, отщепляющие аминокислоты от концов пептидных цепей (экзопептидазы) и в отличие от эндопептидаз — трипсина н химотрипсина — не способные расщеплять пептидные связи, находящиеся внутри полипептидной цепи. Карбоксипептидазы атакуют только С-концевые группы, отщепляя последовательно по одной аминокислоте, что делает ее ценным [c.115]

Читайте также:  Норма размера поджелудочной железы у взрослого в мм

    Методы выделения, очистки и аналитические характеристики пептидов описаны подробно в разд. 3.3. Изучение связи между строением и биологической функцией пептидов ведет к познаванию молекулярного механизма их действия. При этом главное внимание обращается на выяснение активного центра и определение аминокислотной последовательности, которая ответственна за рецепторное связывание, транспорт и иммунологическое поведение. Большой практический интерес имеет также модификация природных пептидов для пролонгирования их действия и расширения практического применения. Такого рода исследования можно проводить только тогда, когда соответствующий природный пептид имеется в достаточном количестве. Необходимые для изучения пептиды можно получать путем частичного ферментативного расщепления экзопептидазами или эндопептидазами или же с помощью специфических химических методов расщепления (бромцианом или Ы-бромсукцинимидом) можно также использовать замещение, элиминирование или превращение функциональных групп соответствующих пептидов. Возможности модификации природных пептидов ограничены тем, что часто исследователь располагает лишь нанограммо-выми количествами этих веществ. [c.90]

    ФалджериДьюш [48] запатентовали сходный процесс того же типа для модифицирования гидролизатов белков сои, арахиса, хлопчатника, кукурузы, рапса и сезама. После термической денатурации белок в суспензии гидролизуется на 60—80 % при добавлении кислотных или основных эндопептидаз животного или растительного происхождения, таких, как пепсин, трипсин, химотрипсин, папаин, фицин, либо экзопептидаз микробиального происхождения. Затем происходит реакция с ангидридом янтарной кислоты при pH 7,0 и температуре ниже 15 °С в результате продукты гидролиза теряют запах и вкус даже в кислом растворе, и в таком виде они рекомендуются для приготовления напитков, таких, как лимонный и томатный сок, или газированных вод. [c.610]

    К недостаткам ферментативных методов относится то, что обларть их применения ограничивается только аминокислотными остатками с /-конфигурацией и свободными а-амино-или а-карбоксильными группами. Кроме того, пептидные связи, образованные некоторыми аминокислотными остатками, не разрываются под действием ферментов, а влияние предшествующих остатков может оказаться достаточным для того, чтобы воспрепятствовать гидролитическому отщеплению остатков, которые, судя по данным о специфичности действия фермента, могли бы отщепляться. Наиболее важным условием успешного применения рассматриваемых ниже ферментов является отсутствие примесей эндопептидаз. Небольшие количества этих примесей приводят к разрыву внутренних пептидных связей, в результате чего появляются новые субстраты для фермента. Субстрат также должен быть настолько чйстьш, чтобы примеси не могли помешать, истолкованию полученных результатов. [c.232]

    Выше уже говорилось о ко-трансляционном протеолитическом отщеплении сигнальной гидрофобной последовательности ряда секреторных и трансмембранных белков эукариот. Сигнальная пептидаза локализована в мембране на ее стороне, обращенной от цитоплазмы (т. е. на люминальной стороне мембраны эндоплазматического ретикулума эукариотической клетки). По типу действия она оказалась эндопептидазой. Характерным местом расщепления полипептидной цепи сигнальной пептидазой. является пептидная связь у малого остатка, такого как С1у или Ala, реже Ser или ys, с его С-стороны (часто, но далеко не всегда, за ним следует заряженный остаток, такой как Arg, Lys, His, Asp). Кроме того, район расщепления должен быть как-то отмечен более открытой конформацией пептида в этом месте. Отщепление сигнального пептида — необходимая предпосылка для последующего выхода растущего пептида в водное замембранное пространство и его ко-трансляционного сворачивания там. [c.286]

    Следует подчеркнуть, что с пищей человек получает огромное разнообразие белков, однако все они подвергаются воздействию ограниченного числа протеиназ. Эти ферменты относятся к классу гидролаз (см. главу 4) и часто называются также пептидазами. Известны две группы пептидаз экзопептидазы, катализирующие разрыв концевой пептидной связи с освобождением одной какой-либо концевой аминокислоты, и эндопептидазы, преимущественно гидролизующие пептидные связи внутри полипептидной цепи. Эндопептидазы обладают разной субстратной специфич- [c.418]

    Три другие важные эндопептидазы трипсин, химотрипсин и эластаза, а также одна экзопептидаза-карбоксипептидаза, участвующие в дальнейшем после действия пепсина в переваривании белков, синтезируются в поджелудочной железе. Все они вырабатываются в неактивной форме, в виде проферментов, и их превращение в активные ферменты происходит в тонкой кишке, куда они поступают с панкреатическим соком. [c.420]

    Частичный кислотный или ферментативный гидролиз. Приэтом полипептид расщепляется на осколки меньшего размера (олигопептиды), которые можно разделить и идентифицировать хроматографическими методами. Часто полипептид расщепляют ступенчато на мелкие пептидные фрагменты с помощью многочисленных специфических эндопептидаз (ферменты, расщепляющие пептидные связи), устанавливают последовательность в каждом из этих фрагментов, порядок соединения этих фрагментов и, наконец, реконструируют полную последовательность а-аминокислотных единиц во всей пептидной цепи. [c.652]

    Согласно современным представлениям, протеиназы называют эндопептидазами, а пептидазы — экзопептидазами. Эндопептидазы, в отличие от экзопептидаз, способны гидролизовать не только пептидные связи, но и связи, расположенные внутри белковых молекул. [c.210]

    Эндопептидазы в растительном мире представлены папаином, фицином и бромелаином. Папаин получают из сока плодов дынного дерева, фицин — из млечного сока видов Fi us, например, инжира, а бро-мелаин выделяют из стеблей ананаса. Оптимум действия pH фицина около 7,0, бромелаина — примерно такое же, оптимальная зона папаина находится при нейтральной, слабощелочной или слабокислой реакции в зависимости от свойств гидролизуемого белка [65, 66, 68, 72]. [c.210]

    Если препараты карбоксипептидазы содержат слишком много примеси эндопептидазы, то предварительная инкубация с ДИПФФ не исключает возможности гидролиза других пептидных связей. В таких случаях рекомендуется перекристаллизовать фермент. [c.293]

Органическая химия. Т.2 (1970) — [

c.713

]

Биологическая химия Изд.3 (1998) — [

c.418

,

c.425

]

Биохимия (2004) — [

c.362

]

Большой энциклопедический словарь Химия изд.2 (1998) — [

c.249

,

c.483

]

Биологическая химия Издание 3 (1960) — [

c.129

]

Биологическая химия Издание 4 (1965) — [

c.137

]

Биохимия аминокислот (1961) — [

c.259

]

Основы биологической химии (1970) — [

c.425

,

c.427

,

c.430

]

Органическая химия Углубленный курс Том 2 (1966) — [

c.697

]

Химия и биология белков (1953) — [

c.279

]

Курс органической и биологической химии (1952) — [

c.344

,

c.345

]

Краткая химическая энциклопедия Том 2 (1963) — [

c.488

]

Биология Том3 Изд3 (2004) — [

c.315

,

c.316

]

Ферменты Т.3 (1982) — [

c.323

,

c.324

]

Основы биохимии (1999) — [

c.130

]

Биологическая химия (2004) — [

c.139

,

c.333

,

c.447

]

Источник