Органы мишени гормонов поджелудочной железы

Гормоны – биологически активные вещества, которые образуются в железах внутренней секреции, выделяются в кровь при действии различных стимулов и способствуют при этом изменению обмена веществ в клетке-мишени. Клетки-мишени – это клетки, на которые действует гормон.

По химической природе гормоны делятся на:

— белковые гормоны – состоят из аминокислот, белковые гормоны могут являться гликопротеинами. К ним относятся гормоны гипоталамуса, гипофиза, поджелудочной железы

— стероидные гормоны – образуются из холестерола. К ним относятся гормоны коры надпочечников, половые гормоны

— производные аминокислоты тирозина. К ним относятся гормоны щитовидной железы и мозгового слоя надпочечников.

Гормоны гипоталамуса

Относятся гормоны белковой природы. Гормоны гипоталамуса регулируют секрецию и синтез гормонов гипофиза, т.е. клетки-мишени для гормонов гипоталамуса – это клетки гипофиза.

— кортиколиберин – стимулирует секрецию и синтез адренокортикотропного гормона в передней доле гипофиза

— тиреолиберин – стимулирует секрецию и синтез тиреотропного гормона в передней доле гипофиза

— гонадолиберин – стимулирует секрецию и синтез гонадотропинов в передней доле гипофиза

— соматолиберин – стимулирует секрецию и синтез соматотропина в передней доле гипофиза

— меланолиберин – стимулирует секрецию и синтез меланоцитстимулирующего гормона в передней доле гипофиза

— соматостатин – снижает секрецию и синтез соматотропина в передней доле гипофиза

— меланостатин – снижает секрецию и синтез меланоцитстимулирующего гормона в передней доле гипофиза

Гормоны гипофиза

Имеют белковую природу. В передней доле гипофиза вырабатываются

— адренокортикотропный гормон – АКТГ. Орган-мишень – кора надпочечников. Под действием АКТГ происходит секреция и синтез стероидных гормонов в коре надпочечников – кортизола, альдостерона, кортикостерона.

— соматотропный гормон – соматотропин. Влияет на все клетки организма, где усиливает биосинтез белка, ДНК, РНК, гликогена, вызывает распад глюкозы и липидов в тканях с целью получения энергии. Такие биохимические эффекты гормона приводят к ростовым процессам.

— тиреотропин – органы-мишени клетки щитовидной железы. Способствует секреции и синтезу в щитовидной железе тироксина (тетрайодтиронина) – Т4 и трийодтиронина – Т3.

— гонадотропины – фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ). Воздействуют на яичники, матку у женщин и семенники у мужчин. При этом в половых железах вырабатываются стероидные гормоны – эстрогены, прогестерон, тестостерон.

— пролактин – основные клетки-мишени молочные железы, где пролактин обеспечивает лактацию. Кроме того, пролактин способствует созреванию желтого тела в яичнике, стимулирует созревание сперматозоидов, синтез и секрецию тестостерона. Вызывает повышение глюкозы в крови.

— липотропин – действует на жировую ткань, где вызывает распад жиров.

— меланотропин – гормон промежуточной доли гипофиза. Клетки-мишени – пигментные клетки кожи. Вызывает синтез пигментов.

Гормоны задней доли гипофиза

— вазопрессин – антидиуретический гормон. Образуется в гипоталамусе, откуда с помощью белка нейрофизина перемещается в заднюю долю гипофиза, где запасается. Его органы-мишени – дистальные почечные канальцы и сосуды. В дистальных почечных канальцах вазопрессин вызывает реабсорбцию воды. Сосуды под действием вазопрессина сужаются.

— окситоцин — образуется в гипоталамусе, откуда с помощью белка нейрофизина перемещается в заднюю долю гипофиза, где запасается. Его органы-мишени – гладкие мышцы внутренних органов, например, матки и сосуды. Под действием окситоцина происходит сокращение гладкомышечного слоя внутренних органов и сосудов.

Гормоны поджелудочной железы

Инсулин — гормон белковой природы. Вырабатывается β-клетками островков Лангерганса поджелудочной железы. Инсулин образуется в ответ на повышение концентрации глюкозы в крови.

Органы-мишени мышцы, жировая ткань. Способствует проникновению аминокислот из крови в клетки, обладает анаболическим действием, усиливая синтез белка; способствует проникновению глюкозы из крови в клетки мышц и жировой ткани, при этом снижается уровень глюкозы в крови. Инсулин способствует синтезу липидов в жировой ткани из углеводных источников. Инсулин вырабатывается в ответ на повышение концентрации глюкозы в крови.

Глюкагон – гормон белковой природы, вырабатывается в α-клетках островков Лангерганса поджелудочной железы. Глюкагон синтезируется в поджелудочной железе в ответ на стресс, физическую работу, голодание, заболевания, связанные с усилением распада веществ, т.к. возникает угроза снижения концентрации глюкозы в крови.

Органы-мишени мышцы, печень. В печени происходит распад гликогена до глюкозы, которая поступает в кровь, где ее концентрация повышается. Далее эта глюкоза поступает в жизненноважные органы – мозг, сердце, почки, а также мышцы с целью получения энергии.

В мышцах также происходит распад гликогена до глюкозо-6-фосфата под действием глюкагона, однако, глюкозо-6-фосфат не проникает в кровь.

Гормоны надпочечников

Гормоны коры надпочечников – гормоны стероидной природы, образуются из холестерола.

Кортизол — органы-мишени печень, мышцы. Кортизол синтезируется в коре надпочечников в ответ на стресс, физическую работу, голодание, заболевания, связанные с усилением распада веществ, т.к. возникает угроза снижения концентрации глюкозы в крови. При этом сначала возникает импульс в ЦНС в ответ на гипогликемию. Из ЦНС импульс идет в гипоталамус, где происходит секреция и синтез кортиколиберина. Под действием кортиколиберина в передней доле гипофиза происходит секреция и синтез АКТГ, АКТГ воздействует на кору надпочечников, где происходит секреция и синтез кортизола. Кортизол переносится в кровь и подходит к мышцам и печени, где вызывает соответствующие эффекты. Способствует распаду белков мышц до аминокислот, которые далее переносятся в кровь и в печень. В печени под действием кортизола из аминокислот образуется глюкоза в процессе глюконеогенеза. Образованная глюкоза выносится в кровь, при этом уровень глюкозы в крови повышается. Далее эта глюкоза поступает в жизненноважные органы – мозг, сердце, почки, а также мышцы с целью получения энергии.

Читайте также:  Можно ли чернослив при панкреатите поджелудочной железы

Альдостерон – органы-мишени дистальные почечные канальцы. Способствует всасыванию натрия в дистальных почечных канальцах в кровь, при этом всасывается вода и хлор, а калий выводится из организма. Поэтому альдостерон вырабатывается в ответ на снижение натрия в крови, например, при обезвоживании, связанном с кровотечениями, обильным потоотделением. На фоне обезвоживания возникает гиповолемия – снижение объема циркулирующей крови и артериального давления. При снижении концентрации натрия в крови происходит возбуждение в ЦНС, импульс далее поступает в гипоталамус, где происходит секреция и синтез кортиколиберина, который способствует выработке АКТГ в передней доле гипофиза. АКТГ действует на кору надпочечников, где происходит секреция и синтез альдостерона. Альдостерон через кровь поступает к клеткам дистальных почечных канальцев, где происходит всасывание натрия, хлора, воды и выведения калия. В результате в крови повышается уровень натрия, воды, и увеличивается артериальное давление.

Гормоны мозгового слоя надпочечников

Адреналин — производное аминокислоты тирозина. Адреналин синтезируется в мозговом слое надпочечников в ответ на стресс, физическую работу, голодание, заболевания, связанные с усилением распада веществ, т.к. возникает угроза снижения концентрации глюкозы в крови. При этом сначала возникает импульс в ЦНС в ответ на гипогликемию. Далее импульс идет на мозговой слой надпочечников, где происходит секреция и синтез адреналина. Органы-мишени для адреналина мышцы, печень. В печени происходит распад гликогена до глюкозы, которая поступает в кровь, где ее концентрация повышается. Далее эта глюкоза поступает в жизненноважные органы – мозг, сердце, почки, а также мышцы с целью получения энергии.

В мышцах также происходит распад гликогена до глюкозо-6-фосфата под действием глюкагона, однако, глюкозо-6-фосфат не проникает в кровь.

Норадреналин — производное аминокислоты тирозина. Норадреналин действует также, как адреналин. Только его эффекты менее выражены.

Гормоны щитовидной железы

Тироксин – тетраийодтиронин – Т4 и трийодтиронин – Т3 – производные аминокислоты тирозина. Источником тирозина является белок тиреоглобулин. Вырабатываются в клетках щитовидной железы. Воздействуют на все органы. Способствуют в физиологических концентрациях синтезу белка, отвечают за усвоение кислорода на дыхательной цепи, т.е. участвуют в синтезе энергии. В целом регулируют процессы распада и синтеза веществ – основной обмен. Секреция и синтез гормонов щитовидной железы находится под контролем тиреолиберина гипоталамуса и тиреотропина гипофиза.

Гормоны половых желез

Являются гормонами стероидной природы, образуются из холестерола.

Тестостерон – образуется в половых железах мужчин и коре надпочечников у женщин. Способствует развитию половых признаков, регулирует функцию размножения, стимулирует синтез белков в мышцах, вызывая их рост.

Эстрогены — эстрон, эстрадиол, эстриол – образуются в женских половых железах и коре надпочечников у мужчин. В первую фазу цикла стимулируют процессы синтеза веществ в эндометрии матки, в результате эндометрий разрастается, утолщается, богат питательными веществами. Также усиливают процессы синтеза веществ в молочных железах.

Прогестерон — во вторую фазу цикла поддерживает процессы синтеза в эндометрии, способствует имплантации плодного яйца, снижает тонус миометрия, поддерживая беременность.

Секреция и синтез эстрогенов и прогестерона находится под контролем фолликулостимулирующего (ФСГ) и лютеинизирующего гормонов (ЛГ). При этом ФСГ участвует в созревании фолликула и овуляции, а ЛГ поддерживает секрецию и синтез прогестерона в желтом теле яичника, которое образуется после овуляции.

Регуляция секреции и синтеза гормонов

Гормоны гипоталамуса способствуют секреции и синтезу гормонов гипофиза. Гормоны гипофиза способствуют секреции и синтезу гормонов в периферических железах внутренней секреции. Такой тип регуляции называется — прямые положительные связи. Гормоны периферических желез внутренней секреции снижают секрецию и синтез гормонов гипоталамуса и гипофиза – отрицательные обратные связи.

Дата добавления: 2014-02-09; просмотров: 5976; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10193 — | 7577 — или читать все…

Читайте также:

Источник

1. ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

2.

Поджелудочная железа (pancreas) – орган
пищеварительной и эндокринной систем.
1. Экзокринная (внешнесекреторная) функция. В
клетках ацинусов железы синтезируется панкреатический сок, который по панкреатическому протоку выделяется в просвет duodenum. Компоненты сока:
• проферменты (зимогены): трипсиноген, химотрипсиноген, эластаза, карбоксипептидаза, панкреатические липазы (липаза, ФЛазаА2, лизоФЛаза и ХС-эстераза), амилаза и нуклеазы. Зимогены активируются
с участием энтеропептидаз (выделяются клетками
duodenum).
• ионы бикарбоната — нейтрализует кислую реакцию
пищевого комка, поступающего в duodenum из
желудка.

3.

2. Эндокринная функция. Реализуется благодаря
клеткам, лежащим между ацинусами, в виде островков
– островков Лангерганса. Клетки островков:
a — клетки, выделяют глюкагон
— клетки, выделяют инсулин
— клетки, выделяют соматостатин
D — клетки, выделяют вазоактивный интестинальный
пептид
Островок Лангерганса
Островки окружены клетками ацинусов (окрашены розовым цветом). На долю островков
приходится 1-2% от объема pancreas. -клетки
составляют 65-80% от общего числа клеток
островка.
Флуоресцентные антитела против глюкагона дают красное окрашивание (периферия
островков). Флуоресцентные антитела про-тив
инсулина – синее окрашивание (централь-ная
часть островков).

4.

ИНСУЛИН
1889 г. — Минковски и Меринг: устновили, что отсутствие некоего продукта в соке pancreas («диабетический фактор») является причиной сахарного диабета
(СД).
1921 г. — Бантинг и Бест: впервые получили экстракт
из pancreas, который снимал симптомы СД в эксперименте. Доказано, что «диабетический фактор» синтезируется в -клетках островков Лангерганса, его назвали «инсулин» (лат. Insula – островок).
1922 г. — Бантинг и Бест получили препарат очищенного инсулина из pancreas свиньи и впервые в мире
успешно применили инсулин для лечения СД.
1923 г. — Бантинг, Бест и двое их коллег получили
Нобелевскую премию за выделение инсулина. С 1923
года начался выпуск инсулина, как фармпрепарата (из
pancreas свиньи).

Читайте также:  Камни в желчном пузыре и диффузные изменения поджелудочной железы

5.

ИНСУЛИН
Синтезируется и секретируется -клетками островков Лангерганса.
Инсулин — полипептид (51 аминокислота, m.m. = 5800), состоит
из 2-х пептидных цепей:
А-цепь 21 аминокислота
В-цепь 30 аминокислот
Три дисульфидные (-S-S-) связи: две связи соединяют А- и Вцепи; одна связь находится внутри А-цепи.
Первичная структура инсулина человека и свиньи отличается по единственной а.к. В-цепи в
положении-30: Tre (человек), Ala (свинья).

6.

СИНТЕЗ И ОБРАЗОВАНИЕ
БИОАКТИВНОГО (ЗРЕЛОГО) ИНСУЛИНА
Зрелый (биологически активный) инсулин образуется из молекулы-предшественника – препроинсулина путём поэтапного
протеолиза, катализиремого специфическими эндопептидазами.
1. Из препроинcулина (110
а.к.) протеолитически удаляется фрагмент (23 а.к.) с N-конца
(сигнальная последовательность).
2. В проинсулине образуются три -S-S- связи.
3. Из проинсулина протеолитически удаляется С-пептид.
Образуется зрелый (биоактивный) инсулин.
Зрелый инсулин запасается
в цитоплазме -клеток в секреторных гранулах (гексамеры,
стабилизированные Zn2+).

7.

КОМПАРТМЕНТЫ СОЗРЕВАНИЯ ИНСУЛИНА
Мембрана шероховатого ЭПР: Сигнальная последовательность
связывается с мембраной ЭПР, что позволяет растущей на рибосомах пептидной цепи препроинсулина постепенно проникать во
внутренне пространство ЭПР.
Внутреннее пространство ЭПР: По завершении синтеза препроинсулина происходит протеолитическое отделение сигнальной
последовательности, которая остается связана с мембраной ЭПР.
В пространстве ЭПР выделяется проинсулин. Он подвергается
фолдингу (оптимальная конформация) и образуются все дисульфидные мостики.
Аппарат Гольджи: Проинсулин покидает ЭПР и доставляется в
аппарат Гольджи, где формируются секреторные гранулы. Тут
завершается созревание инсулина: действующие в двух точках
внутриклеточные эндопептидазы «вырезают» фрагмент «Спептид». Зрелый (биоактивный) инсулин: А- и В-полипептидные
цепи, соединённые двумя дисульфидными мостиками. Молекулы
инсулина через атом Zn формируют гексамеры и в таком виде
ожидают метаболического сигнала к экзоцитозу и выходу в кровь.

8.

СИГНАЛИЗАЦИЯ К ОСВОБОЖДЕНИЮ
ИНСУЛИНА В КРОВЬ
Ведущий метаболический сигнал для выделения инсулина –
повышение [глюкозы] в крови.
• Глюкоза проникает в -клетки с помощью ГЛЮТ 2 – вдоль градиента её концентрации (облегчённая диффузия глюкозы).
• Интенсификация окисления глюкозы приводит к повышению
отношения АТФ/АДФ в клетке. Под влиянием этого в клеточной
мембране закрываются АТФ-чувствительные К+ каналы. К+ перестает выходить из клетки и [K+] повышается. В итоге – электроотрицательность цитозольной поверхности мембраны уменьшается, что приводит к её деполяризации. В ответ на это открываются вольтаж-зависимые Са2+ каналы и внеклеточный Са2+ начинает поступать в клетку и активирует рианодиновые Са2+ каналы
мембраны ЭПР: [Ca2+] в цитоплазме повышается.
• Высокая [Ca2+] активирует ФЛазуС, что запускает образование ДАГ и
И3Ф из ФИ-4,5-диФ.
• И3Ф связывается с рецептором мембраны ЭПР, сопряженным с Са2+
каналом, что приводит к резкому повышению [Са2+]. Скачёк [Са2+] запускает экзоцитоз секреторных гранул и выход инсулина в кровь.

9.

Помимо глюкозы, синтез и секрецию инсулина стимулируют:
• аргинин
• лизин
• гормоны ЖКТ: желудочный ингибиторный полипептид (инсулин), секретин (бикарбонат), гастрин (HCl и пепсин) и холецистокинин (панкреатическая амилаза)
• соматотропный гормон
• кортизол
• эстрогены
Снижает секрецию: адреналин
Основные органы-мишени: печень, мышцы (скелетные и миокард) и жировая ткань.

10.

ВНУТРИКЛЕТОЧНЫЙ СИГНАЛЬНЫЙ ПУТЬ ИНСУЛИНА
Рецептор инсулина относится к классу рецепторов клеточной
поверхности, обладающих тирозинкиназной активностью. В
отличие от других рецепторов этого класса, рецептор инсулина
изначально существует как гомодимер.
При связывании инсулина с рецептором в его цитозольных доменах
активируется тирозинкиназа.
В результате перекрестного аутофосфорилирования на обоих доменах появляются фосфотирозины.
Они становятся точками связывания для белка: субстрата инсулинового рецептора (IRS), содержащий
SН2-домен.
Рецепторная тирозиновая киназа
фосфорилирует IRS, что придает
ему способность связываться и активировать внутриклеточную фосфатидилинозитол-3-киназу (содержит SН2-домен).

11.

Схема
активации гликогенсинтетазы инсулином
ФИ-3К содержит SH2-домен. С её
помощью образуется мембранный
ФИ-3,4,5-трифосфат (ФИФ3). Эта
молекула становится начальным
пунктом собственного каскада
киназ. Сначала активируется киназа
PDK-1 (3-phosphoinositide dependent
protein kinase-1), которая далее
активирует ПКВ. ПКВ фосфорилирует
GSK3 (glycogen synthase kinase-3),
чем инактивирует её. В результате
гликогенсинтаза остаётся в активном
(нефосфорилированном) состоянии.
Инсулин активирует РР1

12.

МЕТАБОЛИЧЕСКИЕ ЭФФЕКТЫ ИНСУЛИНА
ПЕЧЕНЬ:
• Активация гликолиза (окисление глюкозы)
• Активация синтеза гликогена: посредством активации ПКВ
(фосфорилирует и инактивирует киназу ГС, параллельно активирует РР1) большая часть ГС переводится в активную (нефосфорилированную) форму синтез гликогена.
• Ингибирование глюконеогенеза:
а). метаболическая регуляция – подавление уже имеющегося
ключевого фермента глюконеогенеза — ф-1,6-биФазы. ПКВ активирует РР1 активация БФБ, который синтезирует аллостерический регулятор ф-2,6-биФ: активатор ФФК (гликолиз) и ингибитор ф-1,6-биФазы (глюконеогенез).
б). влияние на геном — подавление синтеза ключевых ферментов
глюконеогенеза. ПКВ фосфорилирует транскрипционный фактор FOXO1, который в фосфорилированной форме диссоциирует с инсулин-респонсивных сайтов генов, кодирующих
ключевые ферменты глюконеогенеза.

13.

• Активация синтеза липидов: усиление окисления глюкозы
даёт избыток цитрата в ЦТК. Цитрат переносится в цитозоль, где
с участием цитратлиазы превращается в эквимолярное ко-во
ацетил-КоА. ПКВ активирует РР1, которая дефосфорилирует
ацетил-КоА-карбоксилазу и этим активирует её. Это ключевой
фермент синтеза ЖК: ацетил-КоА малонил-КоА (ключевой
метаболит для синтеза ЖК, ТАГ и ХС). Малонил-КоА – аллостерический ингибитор МХ фермента карнитинацилтрансферазы I,
ответственного за перенос длинноцепочечных ЖК в матрикс для
-окисления. Т.о., подавление окисления ЖК в этих условиях
способствует усилению синтеза липидов.

Читайте также:  Схваткообразные боли в области поджелудочной железы

14.

МЫШЦЫ:
Транспорт глюкозы в гепатоциты обеспечивает ГЛЮТ 2. Мембраны адипоцитов и сарколемма миоцитов исходно непроницаемы
для глюкозы. Для транспорта глюкозы необходим ГЛЮТ 4.Инсулин
активирует ПКВ стимуляция специфического белка, ответственнго за экзоцитоз. Под его влиянием цитозольные везикулы, содержащие ГЛЮТ 4, встраиваются в плазматическую мембрану и приносят туда ГЛЮТ 4, что обеспечивает транспорт глюкозы внутрь
адипоциов и миоцитов.
• Активация гликолиза и синтеза гликогена происходит
согласно механизмам, аналогичным для печени. В мышцах есть
дополнительный механизм, трансформации ГС в активную форму.
Глюкозо-6-Ф (не может выходить из миоцитов т.к. нет Г6Фазы)
является аллостерическим активатором РР1.

15.

ЖИРОВАЯ ТКАНЬ:
• Активация синтеза липидов: происходит согласно механизмам, аналогичным для печени.
• Активация гликолиза: служит источником энергии (АТФ) и
глицерол-3-Ф для синтеза ТАГ а адипоцитах. В жировой ткани
гликолиз единственный источник глицерол-3-Ф.
• Ингибирование липолиза:
а). ПКВ активирует РР1, которая дефосфорилирует и ингибирует гормончувствительную липазу (ГЧЛ) (ответственна за
пуск липолитического каскад в адипоитах).
б). ПКВ активирует фосфодиэстеразу цАМФ, которая быстро
разрушает цАМФ – активатор ГЧЛ.

16.

ГЛЮКАГОН
Синтезируется и секретируется a-клетками островков
Лангерганса.
Глюкагон — полипептид (29 аминокислот, m.m. = 3500), состоит из
единственной пептидной цепи.
Метаболическим сигналом для усиления секреции глюкагона снижение [глюкозы] в крови. Орган-мишень – печень.
В процессе регуляции обмена веществ инсулин и глюкагон являются гормонами – антагонистами. Их концентрация в крови изменяется всегда реципрокно: увеличение концентрации инсулина
одновременно сопровождается снижением концентрации глюкагона и наоборот.
Регуляция метаболизма глюкагном осуществляется в теснейшей
связи с гормоном адреналином (мозговое в-во надпочечников).
Секреция адреналина усиливается также в ответ на снижение
[глюкозы] в крови. Органы-мишени адреналина – жировая ткань и
мышцы. Т.о., глюкагон и адреналин – гормоны — синергисты.

17.

Глюкагон и адреналин реализуют регуляторные эффекты,
связываясь с рецепторами, сопряженными с G-белком
(G-protein coupled receptors, GPCR).
глюкагон или адреналин
Активация аденилатциклазы приводит к 20-кратному увеличнию [цАМФ] в цитозоле в течении нескольких секунд. цАМФ является аллостерическим активатором семейства протеинкиназ А (ПКА). Сигнализация
цАМФ быстро «включается» и быстро «выключается»: спустя секунды после активации в
Ga активизируется ГТФаза замена ГТФ на ГДФ и образуется неактивный гетеротример
G-белка. цАМФ разрушается фософдиэстеразой цАМФ. Её активатор – инсулин.

18.

МЕТАБОЛИЧЕСКИЕ ЭФФЕКТЫ ГЛЮКАГОНА
ПЕЧЕНЬ:
• Активация гликогенолиза (расщепления гликогена):
а). цАМФ активирует ПКА, которая активирует киназу гликогенфосфорилазы (киназа-ГФ) (1-я мишень). Под её влиянием фосфорилируется ГФ, переходя в активную форму расщепление
гликогена.
б). ПКА фосфорилирует гликогенсвязывающий белок (2-я мишень) диссоциация из гранул гликогена РР1, что защищает
активную ГФ от дефосфорилирования (инактивации).
• Активация глюконеогенеза:
Снимает ингибирование ключевого фермента глюконеогенеза:
ф-1,6-биФазы. Активированная ПКА фосфорилирует БФБ, который разрушает аллостерический регулятор ф-2,6-биФ. Его концентрация падает и ф-1,6-биФаза перестаёт ингибироваться,
возвращаясь к активной работе стимуляция глюконеогенеза.
Одновременно гликолитическая ФФК лишается активатора
гликолиз тормозится.

19.

• Подавление синтеза липидов:
Активированная ПКА фосфорилирует ацетил-КоА-карбоксилазу, переводя её в неактивную форму снижение синтеза
малонил-КоА – первого метаболита в синтезе ЖК, ТАГ, ФЛ и ХС
подавление синтеза липидов. Одновременно усиливается транспорт длинноцепочечных ЖК в МХ (стимулируется -окисление) исчезает аллостерическое ингибирование карнитинацилтрансфеазы I.

20.

МЫШЦЫ:
В ответ на снижение [глюкозы] в крови усиливается секреция
адреналина, который действует на мышцы как синергист глюкагона. Адреналин действует, связываясь с мышечной изоформой
GPCR – 2-адренорецептор.
• Активация гликогенолиза (расщепления гликогена):
Механизм активации аналогичен таковому в печени. Детали:
а). В мышцах киназа ГФ также активируется под влиянием комплекса Са2+-кальмодулин.
б). Освобождаемая из гликогена глюкоза-6-Ф остается внутри
миоцита, поскольку в нём отсутствует гюкозо-6-Фаза. Вся мобилизованная глюкоза окисляется в клетке, производя энергию для сокращения мышечных волокон (стимуляция гликолиза).
Глюконеогенез поисходит только в печени (90% de novo синтеза глюкозы) и в почках (10% de novo синтеза
глюкозы).

21.

ЖИРОВАЯ ТКАНЬ:
Как и в мышцах, адреналин действует на адипоциты в качестве синергиста глюкагона. На мембране адипоцитов адреналин связывается с
изоформой GPCR – 3-адренорецептором.
• Активация липолиза (ТАГ, образующих жировую
каплю в цитоплазме адипоцита):
Адреналин повышает в цитоплазме адипоцита [цАМФ], которая
активирует ПКА.
а). 1-я мишень ПКА – белок перилипин, образуюет оболочку
жировой капли, препятствуя контакту липазы с субстратом –
ТАГ. Фосфорилированные молекулы перилипина меняют
конформацию и образуют «окна» в оболочке липидной капли, что обеспечивает доступ липазе к ТАГ.
б). 2-я мишень ПКА – липаза: гормончувствительная липаза
(ГЧЛ). Активированная ГЧЛ катализирует реакцию: ТАГ
ДАГ + ЖК. Появление ДАГ запускает работу ДАГ-липазы:
ДАГ МАГ + ЖК. Появление МАГ запускает работу МАГ-липазы. Т.о., ДАГ- и МАГ-липазы активируются субстратами.
ГЧЛ, ДАГ-липаза и МАГ-липаза – образуют липолитический
каскад.

22. Благодарю за внимание

Источник