Роль гормонов поджелудочной железы инсулина в регуляции глюкозы в крови

Гормонами поджелудочной железы являются инсулин и глюкагон.

Глюкагон

Строение

Представляет собой полипептид, включающий 29 аминокислот с молекулярной массой 3,5 кДа и периодом полураспада 3-6 мин.

Синтез

Осуществляется в клетках поджелудочной железы и в клетках тонкого кишечника.

Регуляция синтеза и секреции

Активируют: гипогликемия, адреналин.
Уменьшают: глюкоза, жирные кислоты.

Механизм действия

Аденилатциклазный активирующий.

Мишени и эффекты

Конечным эффектом является повышение концентрации глюкозы и жирных кислот в крови.

Жировая ткань

  • повышает активность внутриклеточной гормон-чувствительной ТАГ-липазы и, соответственно, стимулирует липолиз.

Печень

  • активация глюконеогенеза и гликогенолиза,
  • за счет повышенного поступления жирных кислот из жировой ткани усиливает кетогенез.

Патология

Гиперфункция

Глюкагонома – редко встречающееся новообразование из группы нейроэндокринных опухолей. У больных отмечается гипергликемия и поражение кожи и слизистых оболочек.

Инсулин

Дополнительная, более подробная информация, об инсулине находится на следующей странице.

Строение

Представляет собой полипептид из 51 аминокислоты, массой 5,7 кД, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками.

Синтез

Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.

Регуляция синтеза и секреции

Активируют синтез и секрецию:

  • глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,
  • жирные кислоты и аминокислоты,
  • влияния n.vagus – находится под контролем гипоталамуса, активность которого определяется концентрацией глюкозы крови,
  • гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ингибирующий полипептид,
  • хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.

Уменьшают: влияние симпато-адреналовой системы.

Механизм действия

Осуществляется через  рецепторы с тирозинкиназной активностью (подробно).

Мишени и эффекты

Основным эффектом является снижение концентрации глюкозы в крови благодаря усилению транспорта глюкозы внутрь миоцитов и адипоцитов и  активации внутриклеточных реакций утилизации глюкозы:

  • активируя фосфодиэстеразу, которая разрушает вторичный мессенджер цАМФ, инсулин прерывает эффекты адреналина и глюкагона на печень и жировую ткань. 
  • в мышцах и жировой ткани стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • в печени и мышцах ускоряет синтез гликогена (активация гликогенсинтазы).
  • в печени, мышцах и адипоцитах инсулин стимулирует гликолиз, активируя фосфофруктокиназу и пируваткиназу.
  • полученный в гликолизе пируват превращается в ацетил-SКоА под влиянием активированного инсулином пируватдегидрогеназного комплекса, и далее используется для синтеза жирных кислот. Превращение ацетил-SКоА в малонил-SКоА, первый субстрат синтеза жирных кислот, также стимулируется инсулином (ацетил-SКоА-карбоксилаза).
  • в мышцах усиливает транспорт нейтральных аминокислот в миоциты и стимулирует трансляцию (рибосомальный синтез белков).

Ряд эффектов инсулина заключается в изменении транскрипции генов и скорости трансляции ферментов, отвечающих за обмен веществ, за рост и деление клеток. 

Благодаря этому индуцируется синтез ферментов метаболизма

  • углеводов в печени (глюкокиназа, пируваткиназа, глюкозо-6-фосфатдегидрогеназа),
  • липидов в печени (АТФ-цитрат-лиаза, ацетил-SКоА-карбоксилаза, синтаза жирных кислот, цитозольная малатдегидрогеназа) и адипоцитах (ГАФ-дегидрогеназа, пальмитатсинтаза, липопротеинлипаза).

и происходит репрессия фосфоенолпируват-карбоксикиназы (подавление глюконеогенеза).

Инактивация инсулина 

Инактивация инсулина начинается после интернализации инсулин-рецепторного комплекса и образования эндосомы, в которой и происходит деградация инсулина.  Участвуют две ферментные системы:

  1. Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями А и В, в результате чего гормон распадается.
  2. Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот. 

Период полужизни инсулина не превышает 5-6 минут.  Происходит деградация в основном в печени и почках, но и другие ткани принимают в этом участие. Также в почках инсулин может фильтроваться, захватываться эпителиоцитами проксимальных канальцев и разрушаться до аминокислот.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Источник

Действие инсулина

Действие инсулина. Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов. Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны. Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку. В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т.н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т.п., осуществляют запасание выделенной из пищи энергии.

Физиологические эффекты инсулина

Физиологические эффекты инсулина. Инсулин оказывает на обмен веществ и энергии сложное и многогранное действие. Многие из эффектов инсулина реализуются через его способность действовать на активность ряда ферментов.

Инсулин — основной гормон, снижающий содержание глюкозы в крови (уровень глюкозы так же снижается и андрогенами, которые выделяются сетчатой зоной коры надпочечников), это реализуется через:

· усиление поглощения клетками глюкозы и других веществ;

· активацию ключевых ферментов гликолиза;

· увеличение интенсивности синтеза гликогена — инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;

· уменьшение интенсивности глюконеогенеза — снижается образование в печени глюкозы из различных веществ.

Анаболические эффекты инсулина:

· усиливает поглощение клетками аминокислот (особенно лейцина и валина);

· усиливает транспорт в клетку ионов калия, а также магния и фосфата;

· усиливает репликацию ДНК и биосинтез белка;

· усиливает синтез жирных кислот и последующую их этерификацию — в жировой ткани и в печени инсулин способствует превращению глюкозы в триглицериды; при недостатке инсулина происходит обратное — мобилизация жиров.

Антикатаболические эффекты инсулина:

· подавляет гидролиз белков — уменьшает деградацию белков;

· уменьшает липолиз — снижает поступление жирных кислот в кровь [30].

Элиминация инсулина из кровотока осуществляется преимущественно печенью и почками.

Регуляция инсулином уровня глюкозы в крови

Регуляция инсулином уровня глюкозы в крови. Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:

· единственный гипогликемический гормон — инсулин;

· гипергликемические гормоны (такие как глюкагон, гормон роста и гормоны надпочечников) — повышают содержание глюкозы в крови.

Читайте также:  Проявления опухоли поджелудочной железы

Рис. 3.1. Пути использования энергоносителей и влияние гормонов на метаболизм [26]

Когда уровень глюкозы снижается ниже нормального физиологического значения, секреция инсулина бета-клетками снижается, но в норме никогда не прекращается. Если же уровень глюкозы падает до опасного уровня, высвобождаются так называемые контринсулиновые (гипергликемические) гормоны (наиболее известны глюкокортикоиды и глюкагон — продукт секреции альфа-клеток панкреатических островков), которые вызывают высвобождение глюкозы в кровь. Адреналин и другие гормоны стресса сильно подавляют выделение инсулина в кровь.

Точность и эффективность работы этого сложного механизма является непременным условием нормальной работы всего организма, здоровья (рис. 3.1.). Длительное повышенное содержание глюкозы в крови (гипергликемия) является главным симптомом и патогенетической сущностью сахарного диабета. Гипогликемия — понижение содержания глюкозы в крови — часто имеет ещё более серьёзные последствия. Так, экстремальное падение уровня глюкозы может быть чревато развитием гипогликемической комы и смертью.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа [27].

Источник

45. Эндокринная функция поджелудочной железы; гормоны, их роль в регуляции обмена веществ. Сахарный диабет.

Поджелудочная железа относится к железам со смешанной функцией. Эндокринная функция осуществляется за счет продукции гормонов панкреатическими островками (островками Лангерганса). Островки расположены в хвостовой части железы, и немного в головном отделе. В островках имеется несколько типов клеток: a, b, d. a-Клетки вырабатывают глюкагон, b-клетки продуцируют инсулин, d-клетки синтезируют соматостатин, который угнетает секрецию инсулина и глюкагона

Инсулин влияет на все виды обмена веществ, но прежде всего на углеводный. происходит уменьшение концентрации глюкозы в плазме крови (гипогликемия), способствует превращению глюкозы в гликоген в печени и мышцах (гликогенез). Он активирует ферменты, участвующие в превращении глюкозы в гликоген печени, и ингибирует ферменты, расщепляющие гликоген. повышает проницаемость клеточной мембраны для глюкозы, что усиливает ее утилизацию; угнетает активность ферментов, обеспечивающих глюконеогенез, за счет чего тормозится образование глюкозы из аминокислот.;стимулирует синтез белка из аминокислот и уменьшает катаболизм белка; регулирует жировой обмен.

Образование инсулина регулируется уровнем глюкозы в плазме крови. Гипергликемия способствует увеличению выработки инсулина, гипогликемия уменьшает образование и поступление гормона в кровь. Некоторые гормоны желудочно-кишечного тракта увеличивают выход инсулина. Блуждающий нерв и ацетилхолин усиливают продукцию инсулина, симпатические нервы и норадреналин подавляют секрецию.

Антагонистами инсулина по характеру действия на углеводный обмен являются глюкагон, АКТГ, соматотропин, глюкокортикоиды, адреналин, тироксин. Введение этих гормонов вызывает гипергликемию.

Недостаточная секреция инсулина приводит к заболеванию, которое получило название сахарного диабета. У больных нарушается не только углеводный, но и белковый и жировой обмен. Усиливается липолиз с образованием большого количества несвязанных жирных кислот, происходит синтез кетоновых тел. Катаболизм белка приводит к снижению массы тела. Интенсивное образование кислых продуктов расщепления жиров и дезаминирования аминокислот в печени могут вызвать сдвиг реакции крови в сторону ацидоза и развитие гипергликемической диабетической комы, которая проявляется потерей сознания, нарушениями дыхания и кровообращения.

Избыточное содержание инсулина в крови (например, при опухоли островковых клеток или при передозировке экзогенного инсулина) вызывает гипогликемию и может привести к нарушению энергетического обеспечения мозга и потере сознания (гипогликемической коме).

a-Клетки островков Лангерганса синтезируют глюкагон, который является антагонистом инсулина. Под влиянием глюкагона происходит распад гликогена в печени до глюкозы. В результате этого повышается содержание глюкозы в крови. Глюкагон способствует мобилизации жира из жировых депо. Секреция глюкагона также зависит от концентрации глюкозы в крови. Гипергликемия тормозит образование глюкагона, гипогликемия, напротив, увеличивает.

источник

Поджелудочная железа выполняет две функции: экзокринную (синтез и секреция пищеварительных ферментов) и эндокринную (синтез и секре ция гормонов). Эндокринную функцию выполняют особые участки поджелудочной железы — островки Л ангерганса, занимающие около 1% ее объема. Эндокринные клетки островков Лангерганса секретируют в кровь:

— глюкагон ( а ль ф а -к лет ки );

— сомат ост ат ин (делы п а -к лет ки ).

По химической структуре эти гормоны относятся к белково-пептидным, а их основная физиологическая роль — регуляция углеводного обмена.

I. Инсулин — основной по количеству и значению гормон остров ков Лангерганса.

Эффекты дейст вия инсулина:

1) гипогликем ическое дейст вие: инсулин — единственный гормон, снижающий концентрацию глюкозы в крови . В частности, инсулин:

• повышает проницаемость клеточных мембран для глюкозы; инсулин регулирует поступление глюкозы во все ткани, исключая ЦНС, нейро ны которой являются инсулиннезависимыми — могут потреблять глюкозу в отсутствие инсулина;

• усиливает утилизацию глюкозы в клетках — ее превращение в гликоген и жиры;

2) анаболическое действие : инсулин стимулирует синтез и тормозит

распад гликогена, жиров и белков, РНК, ДНК (анаболический эффект).

2. Глюкагон — антагонист инсулина — повышает концентрацию глюкозы в крови, усиливая глюконеогенез и расщепление гликогена в печени. Г люкагон также стимулирует распад белков и жиров.

Регуляция секреции инсулина и глюкагона

В основном, осуществляется глюкозой по принципу отрицательной обратной связи. Увеличение концентрации глюкозы в крови приводит к увеличению секреции инсулина и снижению секреции глюкагона; наоборот, снижение концентрации глюкозы тормозит секрецию инсулина и усиливает секрецию глюкагона. Таким образом концентрация глюкозы поддерживается на постоянном уровне (рис. 11).

Рис. 11. Регуляция секреции инсулина и глюкагона.

Дополнительную петлю отрицательной обратной связи в этой cистеме образуют инсулин и глюкагон: глюкагон стимулирует секрецию инсулина, а инсулин тормозит секрецию глюкагона. Кроме того, секрецию обоих гормонов подавляет соматостатин дельта-клеток островков Лангерганса.

Следует добавить, что секрецию инсулина усиливают некоторые гормоны желудочно-кишечного тракта (гастрин, секретин и др.); 2) парасимпатические волокна блуждающего нерва (через Механорецепторы). Наоборот, секрецию инсулина угнетают 2) симпатические волокна (через арадренорецепторы).

Читайте также:  Лекарство от поджелудочной железы сироп

Нормальная концентрация глюкозы в плазме крови (натощак) составляет 3,5-5,5 ммоль/л. В регуляции концентрации глюкозы в крови участвуют несколько гормонов.

Снижает концент рацию глюкозы единственный гормон — инсулин. В норме секреция инсулина повышается после приема пищи, когда концентрация глюкозы в крови может возрастать до 8-9 ммоль/л. Инсулин способствует утилизации глюкозы тканями, что необходимо для их энергообеспечения и для создания энергетических запасов (гликогена и жира).

Повышают концентрацию глюкозы несколько гормонов (их называют «контринсулярными»): глюкагон, глю кокортикоиды, адреналин, т ироидны е горм оны , соматотропный гормон. Секреция этих гормонов усиливается при гипогликемии или при стрессе. В результате, концентрация глюкозы в крови повышается за счет гликогенолиза (распада гликогена) и глюконеогенеза — синтеза глюкозы из неуглеводных соединений: жирных кислот (их концентрация увеличивается вследствие липолиза) и, в крайнем случае, аминокислот (образуются при распаде белков). Выходящая в кровь глюкоза потребляется, в первую очередь, нейронами ЦНС, которые с одной стороны, практически не имеют собственных запасов гликогена и поэтому очень чувствительны к гипогликемии, а с другой стороны, способны потреблять глюкозу в отсутствии инсулина, секреция которого при стрессе снижена.

Патология. Нарушение регуляции уровня глюкозы в крови может приводить к развитию сахарного диабета, основным признаком которого является стойкая гипергликемия (концентрация глюкозы в крови натощак превышает 7 ммоль/л). Повышается также концентрация глюкозы в первичной моче, вследствие чего замедляется реабсорбция воды в почках, и увеличивается диурез — количество вторичной мочи может превышать 5 л/сут.

Механизмы развития сахарного диабета разнообразны и могут быть объединены в две группы:

1 ) абсолютная недостаточность инсулина — снижение секреции инсулина вследствие генетических дефектов, иммунных поражений (3-клеток островков Лангерганса, заболеваний и повреждений поджелудочной железы, недостаточности питания (прежде всего белкового) и других причин;

2) относительная недостаточность инсулина — секреция инсулина в этом случае не снижается, или даже повышается; гипергликемия при этом связана со снижением чувствительности тканей к инсулину вследствие изменения рецепторов инсулина, ожирения, гиперсекреции контринсулярных г ормонов и других причин. Например, сахарный диабет может развиваться при акромегалии (гиперсекреция СТГ), синдроме Иценко-Кушинга (избыток глюкокортикоидов), гипертирозе (гиперсекреция Т3, Т4), феохромоцигоме (опухоль, продуцирующая катехоламины), глюкагономе (опухоль, продуцирующая глюкагон).

источник

Источник

Категории:

Эндокринная часть поджелудочной железы представлена группами «светлых» клеток », расположенных среди экзокринной ткани, которые называются островками поджелудочной железы, или островками Лангерганса. В островках поджелудочной железы выделяют три основных типа клеток (бета-, альфа-и дельта). Гормоны островков поджелудочной железы. В бета-клетках синтезируется гормон инсулин (в форме проинсулина), в альфа-клетках — глюкагон, в дельта-клетках – соматостатин

Инсулин участвует в регуляции углеводного, белкового и липидного обмена. Под его воздействием уменьшается концентрация сахара в крови — возникает гипогликемия. инсулин стимулирует синтез белка из аминокислот и их активный транспорт в клетки. Он также участвует в регуляции жирового обмена, способствуя образованию высших жирных кислот из продуктов углеводного обмена (липогенеза), а также усиливая способность жировой ткани и клеток печени к захвату свободных жирных кислот и накопление их в форме триглицеридов (липидогенез).

Глюкагон усиливает гликогенолиз в печени и повышает уровень глюкозы в крови за счет активации цАМФ. Глюкагон ускоряет окисление жирных кислот в печени.

Соматотропин тормозит секрецию инсулина.

На образование глюкагона в альфа-клетках влияют и соматотропин аденогипофиза, который повышает активность альфа-клеток. Соматостатин, наоборот, тормозит образование и выделение глюкагона.

Главной функцией гормонов поджелудочной железы является регуляция обмена углеводов, при этом они поддерживают уровень глюкозы в крови на оптимальном для организма уровне. Вырабатываются гормоны островко-вым аппаратом поджелудочной железы, локализующимся преимущественно в ее хвостовой части. Основную массу островков Лангерганса (около 60 %) составляют Р-клетки, которые секретиру-ют инсулин. Примерно 25 % общего количества клеток островкового аппарата приходится на долю а-клеток, секрети-рующих глюкагон. Дельта-клетки, которых примерно 10 %, секретируют сома-тостатин. Клетки РР, которых в железе немного, секретируют гормон неясной функции, называемый панкреатическим полипептидом; G-клетки (их количество менее 5 % вместе с РР-клетками) продуцируют гастрин.

Функции инсулина. В крови инсулин циркулирует, в основном, в свободном виде, его период полужизни составляет примерно 6 мин. Инсулин принимает участие в регуляции углеводного, белкового и жирового обмена, стимулируя гликогенез (особенно в печени) и повышая проницаемость клеточных мембран для глюкозы и аминокислот. Стимулирует синтез белков на фоне угнетения их распада, а также торможение глюконеогенеза. Инсулин способствует образованию жирных кислот (липогенез) из продуктов углеводного обмена, а также тормозит мобилизацию жира из жировой ткани (липолиз). Рецепторы инсулина расположены на мембране клетки-мишени — гормон не проникает в клетку.

Главным регулятором секреции инсулина является концентрация глюкозы в крови (рис. 8.6). Гипергликемия ведет к увеличению его секреции, гипогликемия — к уменьшению. Глюкоза стимулирует и секрецию инсулина за счет непосредственного воздействия на бетта-клетки островков Лангерганса, при этом ионы Са2+ запускают высвобождение инсулина.

Нервная регуляция осуществляется рефлекторно, при действии глюкозы на хеморецепторы каротидного синуса и возбуждения их, а также под действием глюкозы на глюкорецепторы гипоталамуса. Блуждающий нерв усиливает образование инсулина, что ведет к снижению уровня глюкозы в крови, в результате увеличения потребления его клетками и увеличение гликогенеза. Симпатический нерв, напротив, тормозит образование инсулина, увеличивая содержание глюкозы в крови.

Влияния гормонов. Стимулируют образование инсулина гормоны сомато-тропин, посредством соматомединов, секретин и холецистокинин-панкрео-зимин, простагландин Е за счет повышения аденилатциклазной активности бетта-клеток поджелудочной железы. СТГ, напротив, тормозит образование инсулина, действуя непосредственно на бетта-клетки островков Лангерганса. Соматостатин образуется в ядрах гипоталамуса, а также в клетках других тканей организма, в дельта-клетках островков Лан-герганса. Здесь он действует на бетта-клетки паракринным путем.

Разрушается инсулин инсу-линазой, наибольшее количество которой содержится в печени (меньше в почках и скелетных мышцах, мало в других тканях организма).

Функции глюкагона. Как указывалось выше, глюкагон — полипептид, синтезируемый альфа-клетками островков Лангерганса, является антагонистом инсулина. Гл ю к а г о н повышает содержание глюкозы в крови с помощью гликогенолиза в печени, он и инсулин поддерживают оптимальную концентрацию глюкозы в крови и снабжение ею клеток организма, что особенно важно для ЦНС развивающегося организма.

Читайте также:  Сахар можно при заболевании поджелудочной железы

При связывании глюкагона с рецепторами в клетках печени увеличивается активность фермента аденилатцикла-зы и концентрация внутриклеточного цАМФ, что способствует процессу гли-

когенолиза, т.е. превращения гликогена в глюкозу. Активность глюкагона плода к моменту рождения соответствует таковой у взрослого человека, но в первые три дня жизни она снижается, а затем нормализуется. Гипофункция островко-вых клеток ведет к нарушению роста и умственного развития ребенка.

Регуляция образования глюкагона (рис. 8.7). При повышении содержания глюкозы в крови происходит торможение образования и секреции глюкагона, а при его понижении — увеличение. Высокие концентрации аминокислот в крови стимулируют секрецию инсулина и глюкагона. Взаимодействие инсулина и глюкагона стабилизирует концентрацию глюкозы в крови, при этом глюкагон стимулирует глюконеоге-нез и гликогенез, защищает организм от снижения содержания глюкозы в крови в результате действия инсулина. Гормон роста (СТГ) посредством соматомеди-нов повышает активность альфа-клеток и они больше продуцируют глюкагона. Соматостатин, секретируемый дельта-клетками островкового аппарата поджелудочной железы, тормозит образование и секрецию глюкагона и инсулина.

Соматостатин — третий из основных гормонов поджелудочной железы. Он накапливается в дельта-клетках несколько позднее, чем инсулин и глюкагон. Пока нет убедительных доказательств существенных различий в концентрации соматостатина у детей раннего возраста и у взрослых. Однако приводимые данные о диапазоне колебаний этого гормона — для новорожденных 70—190 пг/мл, для грудных детей 55-186 пг/мл, а для взрослых 20—150 пг/мл — свидетельствуют о том, что минимальные его уровни с возрастом явно снижаются.

 Эндокринная активность поджелудочной железы осуществляется панкреатическими островками (островками Лангерганса). В островковом аппарате представлено несколько типов клеток:

 1) α-клетки, в которых происходит выработка глюкагона;

 2) β-клетки, вырабатывающие инсулин;

 3) δ-клетки, продуцирующие соматостатин, который угнетает секрецию инсулина и глюкагона;

 4) G-клетки, вырабатывающие гастрин;

 5) ПП-клетки, вырабатывающие небольшое количество панкреатического полипептида, который является антагонистом холецистокинина.

 β-Клетки составляют большую часть островкового аппарата поджелудочной железы (примерно 60%). Они продуцируют инсулин, который влияет на все виды обмена веществ, но, прежде всего, снижает уровень глюкозы в плазме крови.

 Под воздействием инсулина существенно увеличивается проницаемость клеточной мембраны для глюкозы и аминокислот, что приводит к усилению биоэнергетических процессов и синтеза белка. Кроме того, в результате подавления активности ферментов, обеспечивающих глюконеогенез, тормозится образование глюкозы из аминокислот, поэтому они могут быть использованы для биосинтеза белка. Под влиянием инсулина уменьшается катаболизм белка. Таким образом, процессы образования белка начинают преобладать над процессами его распада, что обеспечивает анаболический эффект. По своему влиянию на белковый обмен инсулин является синергистом соматотропина. Более того, установлено, что адекватная стимуляция роста и физического развития под влиянием соматотропина может происходить только при условии достаточной концентрации инсулина в крови.

 Влияние инсулина на жировой обмен, в конечном счете, выражается в усилении процессов липогенеза и отложении жира в жировых депо. Поскольку под влиянием инсулина возрастает утилизация тканями и использование глюкозы в качестве энергетического субстрата, определенная часть жирных кислот сберегается от энергетических трат и используется в последующем для липогенеза. Кроме того, дополнительное количество жирных кислот образуется из глюкозы, а также за счет ускорения их синтеза в печени. В жировых депо инсулин угнетает активность липазы и стимулирует образование триглицеридов.

 Недостаточная секреция инсулина приводит к развитию сахарного диабета. При этом резко увеличивается содержание глюкозы в плазме крови, возрастает осмотическое давление внеклеточной жидкости, что приводит к дегидратации тканей, появлению жажды. Поскольку глюкоза относится к «пороговым» веществам, то при определенном уровне гипергликемии тормозится ее реабсорбция в почках и возникает глюкозурия. Вследствие того что глюкоза является осмотически активным соединением, в составе мочи возрастает также количество воды, что приводит к увеличению диуреза (полиурия). Усиливается липолиз с образованием избыточного количества несвязанных жирных кислот; происходит образование кетоновых тел. Катаболизм белка и недостаток энергии (нарушена утилизация глюкозы) приводит к астении и снижению массы тела.

 Избыточное содержание инсулина в крови вызывает резкую гипогликемию, что может привести к потере сознания (гипогликемическая кома). Это объясняется тем, что в головном мозге утилизация глюкозы не зависит от действия фермента гексокиназы, активность которой регулируется инсулином. В связи с этим поглощение глюкозы мозговой тканью определяется в основном концентрацией глюкозы в плазме крови. Ее снижение под действием инсулина может привести к нарушению энергетического обеспечения мозга и потере сознания.

 Выработка инсулина регулируется механизмом отрицательной обратной связи в зависимости от концентрации глюкозы в плазме крови. Повышение содержания глюкозы способствует увеличению выработки инсулина; в условиях гипогликемии образование инсулина, наоборот, тормозится. Секреция инсулина в некоторой степени возрастает при росте содержания аминокислот в крови. Увеличение выхода инсулина наблюдается также под действием некоторых гастроинтестинальных гормонов (желудочный ингибирующий пептид, холецистокинин, секретин). Кроме того, продукция инсулина может возрастать при стимуляции блуждающего нерва. В опытах на животных показано, что при пропускании крови с высоким содержанием глюкозы через сосуды головы, которая соединена с телом только блуждающими нервами, наблюдается увеличение продукции инсулина.

 α-Клетки, составляющие примерно 25% островковой ткани, вырабатывают глюкагон, действие которого приводит к гипергликемии. В основе этого эффекта лежат усиленный распад гликогена в печени и стимуляция процессов глюконеогенеза. Глюкагон способствует мобилизации жира из жировых депо. Таким образом, действие глюкагона противоположно эффектам инсулина. Установлено, что, кроме глюкагона, существует еще несколько гормонов, которые по своему действию на углеводный обмен являются антагонистами инсулина. Введение этих гормонов приводит к гипергликемии. К ним относятся кортикотропин, соматотропин, глюкокортикоиды, адреналин, тироксин.

Дата добавления: 2018-11-11; просмотров: 550 | Нарушение авторских прав

Рекомендуемый контект:

Поиск на сайте:

Источник