В поджелудочной железе хорошо развита гранулярная эпс

Эндоплазматическая сеть (эндоплазматический ретикулум) была открыта К. Р. Портером в 1945 г.

Эта структура представляет собой систему взаимосвязанных вакуолей, плоских мембранных мешков или трубчатых образований, создающих мембранную трехмерную сеть внутри цитоплазмы. Эндоплазматическая сеть (ЭПС) встречается практически у всех эукариотов. Она связывает органеллы между собой и транспортирует питательные вещества. Различают две самостоятельные органеллы: гранулярную (зернистую) и гладкую незернистую (агранулярную) эндоплазматическую сеть.

Гранулярная (шероховатая, или зернистая) эндоплазматическая сеть. Представляет собой систему плоских, иногда расширенных цистерн, канальцев, транспортных пузырьков. Размер цистерн зависит от функциональной активности клеток, а ширина просвета может составлять от 20 нм до нескольких мкм. Если цистерна резко расширяется, то она становится заметной при световой микроскопии и ее идентифицируют как вакуоль.

Цистерны образованы двухслойной мембраной, на поверхности которой содержатся специфические рецепторные комплексы, обеспечивающие прикрепление к мембране рибосом, транслирующие полипептидные цепочки секреторных и лизосомальных белков, белков цитолеммы и др., то есть белков, не сливающихся с содержимым кариоплазмы и гиалоплазмы.

Пространство между мембранами заполнено однородным матриксом низкой электронной плотности. Снаружи мембраны покрыты рибосомами. Рибосомы при электронной микроскопии видны как мелкие (диаметром около 20 нм), темные, почти округлые частицы. Если их много, то это придает зернистый вид наружной поверхности мембраны, что и послужило основой для названия органеллы.

На мембранах рибосомы располагаются в виде скоплений — полисом, которые образуют разнообразные по форме розетки, гроздья или спирали. Такая особенность распределения рибосом объясняется тем, что они связаны с одной из иРНК, с которой считывают информацию, синтезируют полипептидные цепочки. Такие рибосомы прикрепляются к мембране ЭПС с помощью одного из участков большой субъединицы.

В некоторых клетках гранулярная эндоплазматическая сеть (гр. ЭПС) состоит из редких разрозненных цистерн, но может образовывать крупные локальные (очаговые) скопления. Слабо развита гр. ЭПС в малодифференцированных клетках или в клетках с низкой секрецией белков. Скопления гр. ЭПС находятся в клетках, активно синтезирующих секреторные белки. При повышении функциональной активности цистерны органеллы становятся множественными и нередко расширяются.

Гр. ЭПС хорошо развита в секреторных клетках поджелудочной железы, главных клетках желудка, в нейронах и др. В зависимости от типа клеток гр. ЭПС может распределяться диффузно или локализоваться в одном из полюсов клетки, при этом многочисленные рибосомы окрашивают данную зону базофильно. Например, в плазматических клетках (плазмоцитах) хорошо развитая гр. ЭПС обусловливает яркую базофильную окраску цитоплазмы и соответствует участкам концентрации рибонуклеиновых кислот. В нейронах органелла располагается в виде компактно лежащих параллельных цистерн, что при световой микроскопии проявляется в виде базофильной зернистости в цитоплазме (хроматофильное вещество цитоплазмы, или тигроид).

В большинстве случаев на гр. ЭПС синтезируются белки, которые не используются самой клеткой, а выделяются во внешнюю среду: белки экзокринных желез организма, гормоны, медиаторы (белковые вещества эндокринных желез и нейронов), белки межклеточного вещества (белки коллагеновых и эластических волокон, основного компонента межклеточного вещества). Белки, образуемые гр. ЭПС, входят также в состав лизосомальных гидролитических ферментных комплексов, располагающихся на внешней поверхности мембраны клетки. Синтезированный полипептид не толькко накапливается в полости ЭПС, но и перемещается, транспортируется по каналам и вакуолям от места синтеза в другие участки клетки. В первую очередь такой транспорт осуществляется в направлении комплекса Гольджи. При электронной микроскопии хорошее развитие ЭПС сопровождается параллельным увеличением (гипертрофией) комплекса Гольджи. Параллельно с ним усиливается развитие ядрышек, увеличивается число ядерных пор. Нередко в таких клетках имеются многочисленные секреторные включения (гранулы), содержащие секреторные белки, увеличивается число митохондрий.

Белки, накапливающиеся в полостях ЭПС, минуя гиалоплазму, чаще всего транспортируются в комплекс Гольджи, где они модифицируются и входят в состав либо лизосом, либо секреторных гранул, содержимое которых остается изолированным от гиалоплазмы мембраной. Внутри канальцев или вакуолей гр. ЭПС происходит модификация белков, связывание их с сахарами (первичное гликозилирование); конденсация синтезированных белков с образованием крупных агрегатов — секреторных гранул.

На рибосомах гр. ЭПС синтезируются мембранные интегральные белки, встраивающиеся в толщу мембраны. Здесь же со стороны гиалоплазмы идет синтез липидов и их встраивание в мембрану. В результате этих двух процессов наращиваются сами мембраны ЭПС и другие компоненты вакуолярной системы.

Основная функция гр. ЭПС — это синтез на рибосомах экспортируемых белков, изоляция от содержимого гиалоплазмы внутри мембранных полостей и транспорт этих белков в другие участки клетки, химическая модификация или локальная конденсация, а также синтез структурных компонентов клеточных мембран.

В процессе трансляции рибосомы прикрепляются к мембране гр. ЭПС в виде цепочки (полисомы). Возможность связаться с мембраной обеспечивают сигнальные участки, которые прикрепил ются к специальным рецепторам ЭПС — причальный белок. После этого рибосома связывается с белком, фиксирующим ее к мембране, а образующаяся полипептидная цепочка транспортируется через поры мембран, которые открываются при помощи рецепторов. В результате субъединицы белков оказываются в межмембранном пространстве гр. ЭПС. К образующимся полипептидам может присоединиться олигосахарид (гликозилирование), который отщепляется от долихол-фосфата, прикрепленного к внутренней поверхности мембраны. В последующем содержимое просвета канальцев и цистерн гр. ЭПС с помощью транспортных пузырьков переносится в цис-компартмент комплекса Гольджи, где подвергается дальнейшей трансформации.

Гладкая (агранулярная) ЭПС. Она может быть связана с гр. ЭПС переходной зоной, но, тем не менее, является самостоятельной органеллой с собственной системой рецепторных и ферментативных комплексов. Она состоит из сложной сети канальцев, плоских и расширенных цистерн и транспортных пузырьков, но если в гр. ЭПС преобладают цистерны, то в гладкой эндоплазматической сети (глад. ЭПС) больше канальцев диаметром около 50…100 нм.

К мембранам глад. ЭПС не прикрепляются рибосомы, что обусловлено отсутствием рецепторов к этим органеллам. Таким образом, глад. ЭПС хотя и является морфологическим продолжением гранулярной, не просто эндоплазматическая сеть, на которой в данный момент нет рибосом, а представляет собой самостоятельную органеллу, на которую рибосомы не могут прикрепиться.

Читайте также:  Влияния стресса на поджелудочную железу

Глад. ЭПС участвует в синтезе жиров, метаболизме гликогена, полисахаридов, стероидных гормонов и некоторых лекарственных веществ (в частности, барбитуратов). В глад. ЭПС проходят заключительные этапы синтеза всех липидов клеточных мембран. На мембранах глад. ЭПС находятся липидтрансформирующие ферменты — флиппазы, перемещающиеся молекулы жиров и поддерживающие асимметрию липидных слоев.

Глад. ЭПС хорошо развита в мышечных тканях, особенно поперечнополосатых. В скелетных и сердечных мышцах она формирует крупную специализированную структуру — саркоплазматический ретикулум, или L-систему.

Саркоплазматический ретикулум состоит из взаимно переходящих друг в друга сетей L-трубочек и краевых цистерн. Они оплетают специальные сократительные органеллы мышц — миофибриллы. В поперечнополосатых мышечных тканях органелла содержит белок — кальсеквестрин, связывающий до 50 ионов Са2+. В гладких мышечных клетках и немышечных клетках в межмембранном пространстве имеется белок кальретикулин, также связывающий Са2+.

Таким образом, глад. ЭПС является резервуаром ионов Са2+. В момент возбуждения клетки при деполяризации ее мембраны ионы кальция выводятся из ЭПС в гиалоплазму ведущий механизм, запускающий сокращение мышц. Это сопровождается сокращением клеток и мышечных волокон за счет взаимодействия актомиозиновых или актоминимиозиновых комплексов миофибрилл. В покое происходит обратное всасывание Са2+ в просвет канальцев глад. ЭПС, что ведет к снижению содержания кальция в матриксе цитоплазмы и сопровождается расслаблением миофибрилл. Белки кальциевого насоса регулируют трансмембранный перенос ионов.

Повышение концентрации ионов Са2+ в матриксе цитоплазмы также ускоряет секреторную активность немышечных клеток, стимулирует движение ресничек и жгутиков.

Глад. ЭПС дезактивирует различные вредные для организма вещества за счет их окисления с помощью ряда специальных ферментов, особенно в клетках печени. Так, при некоторых отравлениях в клетках печени появляются ацидофильные зоны (не содержащие РНК), сплошь заполненные гладким эндоплазматическим ретикулумом.

В коре надпочечников, в эндокринных клетках половых желез глад. ЭПС участвует в синтезе стероидных гормонов, и на ее мембранах находятся ключевые ферменты стероидогенеза. В таких эндокриноцитах глад. ЭПС имеет вид обильных канальцев, которые в поперечном сечении видны как многочисленные пузырьки.

Глад. ЭПС образуется из гр. ЭПС. В отдельных участках глад. ЭПС образуются новые липопротеидные мембранные участки, лишенные рибосом. Эти участки могут разрастаться, отщепляться от гранулярных мембран и функционировать как самостоятельная вакуолярная система.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

1. К какой группе органоидов относятся лизосомы, эндоплазматическая сеть и аппарат Гольджи?

Одномембранные, двумембранные, немембранные.

Лизосомы, эндоплазматическая сеть и аппарат Гольджи являются одномембранными органоидами.

2. Каково строение и функции эндоплазматической сети? Чем шероховатая ЭПС отличается от гладкой?

Эндоплазматическая сеть (ЭПС) представляет собой систему каналов и полостей, окружённых мембраной и пронизывающих гиалоплазму клетки. Мембрана эндоплазматической сети по строению сходна с плазмалеммой. ЭПС может занимать до 50% объёма клетки, её каналы и полости нигде не обрываются и не открываются в гиалоплазму.

Различают шероховатую и гладкую ЭПС. На мембране шероховатой ЭПС расположено множество рибосом, мембрана гладкой ЭПС не содержит рибосом. На рибосомах шероховатой ЭПС синтезируются белки, выводимые за пределы клетки, а также мембранные белки. На поверхности гладкой ЭПС происходит синтез липидов, олиго- и полисахаридов. Кроме того, в гладкой ЭПС, накапливаются ионы Са2+ – важные регуляторы функций клеток и организма в целом. Гладкая ЭПС клеток печени осуществляет процессы расщепления и обезвреживания токсичных веществ.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют большое количество белков (например, в клетках слюнных желез и поджелудочной железы, осуществляющих синтез пищеварительных ферментов; в клетках поджелудочной железы и гипофиза, вырабатывающих гормоны белковой природы). Гладкая ЭПС хорошо развита в клетках, которые синтезируют, например, полисахариды и липиды (клетки надпочечников и половых желез, вырабатывающие стероидные гормоны; клетки печени, осуществляющие синтез гликогена и др.).

Вещества, которые образуются на мембранах ЭПС, накапливаются внутри полостей сети и преобразуются. Например, белки приобретают свойственную им вторичную, третичную или четвертичную структуру. Затем вещества заключаются в мембранные пузырьки и транспортируются в комплекс Гольджи.

3. Как устроен комплекс Гольджи? Какие функции он выполняет?

Комплекс Гольджи – это система внутриклеточных мембранных структур: цистерн и пузырьков, в которых накапливаются и модифицируются вещества, синтезированные на мембранах ЭПС.

Вещества доставляются в комплекс Гольджи в мембранных пузырьках, которые отшнуровываются от ЭПС и присоединяются к цистернам комплекса Гольджи. Здесь эти вещества претерпевают различные биохимические превращения, а затем снова упаковываются в мембранные пузырьки и большая их часть транспортируется к плазмалемме. Мембрана пузырьков сливается с цитоплазматической мембраной, а содержимое выводится за пределы клетки. В комплексе Гольджи растительных клеток синтезируются полисахариды клеточной стенки. Ещё одна важная функция комплекса Гольджи – образование лизосом.

4. Самые крупные комплексы Гольджи (до 10 мкм) обнаружены в клетках эндокринных желез. Как вы думаете, с чем это связано?

Главная функция клеток эндокринных желез – секреция гормонов. Синтез гормонов происходит на мембранах ЭПС, а накопление, преобразование и выведение этих веществ осуществляет комплекс Гольджи. Поэтому в клетках эндокринных желез сильно развит комплекс Гольджи.

5. Что общего в строении и функциях эндоплазматической сети и комплекса Гольджи? Чем они отличаются?

Сходство:

● Представляют собой комплексы внутриклеточных мембранных структур, ограниченных одинарной мембраной от гиалоплазмы (т.е. являются одномембранными органоидами).

● Способны отделять мембранные пузырьки, содержащие различные органические вещества. Вместе составляют единую систему, обеспечивающую синтез веществ, их модификацию и выведение из клетки (обеспечивают «экспорт»).

● Лучше всего развиты в тех клетках, которые специализируются на секреции биологически активных веществ.

Различия:

● Основные мембранные компоненты эндоплазматической сети – каналы и полости, а комплекса Гольджи – уплощённые цистерны и мелкие пузырьки.

● ЭПС специализируется на синтезе веществ, а комплекс Гольджи – на накоплении, модификации и выведении из клетки.

…и (или) другие существенные признаки.

6. Что представляют собой лизосомы? Как они образуются? Какие функции выполняют?

Читайте также:  Эффективность лечения при раке поджелудочной железы

Лизосомы – небольшие мембранные пузырьки, которые отшнуровываются от цистерн аппарата Гольджи и содержат набор пищеварительных ферментов, способных расщеплять различные вещества (белки, углеводы, липиды, нуклеиновые кислоты и др.) до более простых соединений.

Пищевые частицы, поступающие в клетку извне, упаковываются в фагоцитарные пузырьки. Лизосомы сливаются с этими пузырьками – так образуются вторичные лизосомы, в которых под действием ферментов питательные вещества расщепляются до мономеров. Последние путём диффузии поступают в гиалоплазму, а непереваренные остатки выводятся за пределы клетки путём экзоцитоза.

Помимо переваривания веществ, поступивших в клетку извне, лизосомы принимают участие в расщеплении внутренних компонентов клетки (молекул и целых органоидов), повреждённых или отслуживших свой срок. Этот процесс получил название аутофагии. Кроме того, под действием ферментов лизосом может происходить самопереваривание старых, утративших функциональную активность или повреждённых клеток и тканей.

7*. Предположите, почему ферменты, находящиеся в лизосоме, не расщепляют её собственную мембрану. К каким последствиям для клетки может привести разрыв мембран лизосом?

Структурные компоненты мембран лизосом ковалентно связаны с большим количеством олигосахаридов (необычайно сильно гликозилированы). Это не позволяет ферментам лизосом взаимодействовать с мембранными белками и липидами, т.е. «переваривать» мембрану.

Вследствие разрыва мембран лизосом пищеварительные ферменты попадают в гиалоплазму, что может привести к расщеплению структурных компонентов клетки и даже к автолизу – самоперевариванию клетки. Однако ферменты лизосом работают в кислой среде (рН внутри лизосом составляет 4,5 — 5,0), если же среда близка к нейтральной, что характерно для гиалоплазмы (рН = 7,0 — 7,3), их активность резко снижается. Это один из механизмов защиты клеток от самопереваривания в случае спонтанного разрыва мембран лизосом.

8*. Установлено, что к молекулам многих веществ, подлежащих выведению из клетки, в комплексе Гольджи «пришиваются» определённые олиго- или полисахариды, причём к разным веществам — различные углеводные компоненты. В таком модифицированном виде вещества и выводятся во внеклеточную среду. Как вы думаете, для чего это нужно?

Углеводные компоненты являются своеобразными метками или «удостоверениями», в соответствии с которыми вещества поступают к местам их функционирования, не будучи по пути расщеплёнными под действием ферментов. Таким образом, по углеводным меткам организм отличает служебные вещества от чужеродных и подлежащих переработке.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Дашков М.Л.

Сайт: dashkov.by

Вернуться к оглавлению

Источник

Поджелудочная железа (pancreas) включает 2 части: 1) экзокринную и 2) эндокринную.

В экзокринной части вырабатывается панкреатический сок, содержащий ферменты — трипсин, липазу, амилазу и др., который поступает в двенадцатиперстную кишку.

В эндокринной части вырабатываются гормоны: инсулин, глюкагон, соматостатин, ВИП, панкреатический полипептид.

Развитие.

Поджелудочная железа развивается на 3-4-й неделе эмбриогенеза из 2 зачатков:

1) эпителий — из дор­сального и вентральных выпячиваний энтодермальной киш­ки, врастающих в брыжейку;

2) соединительнотканная строма, кровеносные сосуды и капсула — из мезенхимы. На 3-м месяце эмбриогенеза происходит дифференцировка зачатка на экзокринную и эндокринную части.

В экзокринной части образуются ацинусы и выводные протоки. Развитие эндокринной части начинается с появле­ния почек на выводных протоках экзокринной части, потом эти почки отделяются от стенки протоков и дифференциру­ются в панкреатические островки.

Общий план строения.

Поджелудочная железа покрыта тонкой соединительнотканной капсулой, срастающейся с брюшиной. От капсулы отходят соединительнотканные тя­жи, разделяющие железу на дольки. В тяжах находятся междольковые выводные протоки, кровеносные сосуды, нервы, интрамуральные нервные ганглии, пластинчатые тельца. Доля экзокринной части железы составляет 97 %, эндокрин­ной — 3 %.

Экзокринная часть поджелудочной железы. Эта часть поджелудочной железы представлена панкреатическими ацинусами, межацинозными, внутридольковыми и междольковыми выводными протоками, впадающими в общий вы­водной проток, который открывается в двенадцатиперстную кишку.

Структурно-функциональной единицей экзокринной ча­сти является панкреатический ацинус (acinus pancreaticus). Он состоит из концевого отдела и вставочного протока. Аци­нус имеет форму мешочка, его размеры 100-150 мкм. Ацинусы отделяются друг от друга тонкими прослойками рыхлой соединительной ткани, богатой ретикулярными волокнами. В прослойках проходят капилляры, нервные волокна и нахо­дятся интрамуральные ганглии.

Железистые клетки ацинуса расположены на базальной мембране. Они называются экзокринными панкреацитами, или ациноцитами (acinocytus). В центре ацинусов располага­ются клетки вставочных протоков. Эти клетки называются центроацинозными эпителиоцитами (cellulae centroacinosi).

Ациноциты имеют форму пирамид, широким концом лежат на базальной мембране, а узким апикальным концом обращены в просвет ацинуса. Цитолемма базального конца образует складки, на апикальной поверхности имеются ми­кроворсинки. Ациноциты соединяются друг с другом при помощи замыкательных пластинок, десмосом и интердигитаций. В апикальной части клеток содержатся крупные гра­нулы незрелого фермента (незрелый фермент называется зимогеном) размерами около 800 нм. Апикальная часть ациноцитов окрашивается оксифильно и называется зимогенной зоной.

В базальной части ациноцитов сконцентрирована грану­лярная ЭПС, богатая рибосомами. Эта часть клеток окраши­вается базофильно и называется гомогенной зоной. Мито­хондрии ациноцитов разбросаны по всей цитоплазме, ком­плекс Гольджи располагается над ядром. Ядро находится в базальной части клеток, имеет круглую форму и содержит ядрышки.

Функция ациноцитов заключается в синтезе белков пищеварительных ферментов (трипсина, липазы, амилазы и др.)

Вставочный проток ацинуса может внедряться в центр концевого отдела — в таком случае в центре ацинуса видны центроацинозные клетки. В то же время вставочный про­ток может прилежать к боковой поверхности ацинуса — в та­ком случае клетки вставочного протока лежат на той же базальной мембране, на которой находятся ациноциты.

Центроацинозные клетки имеют малые размеры, оваль­ное ядро, вокруг которого располагается тонкий слой слабо окрашенной цитоплазмы, бедной органеллами. На их по­верхности имеются единичные микроворсинки.

Секрет ациноцитов поступает во вставочный проток, от­туда — в межацинозный проток (ductus interacinosus).

Межацинозные протоки выстланы кубическим эпители­ем, в клетках которого имеется хорошо развитый комплекс Гольджи. Клетки соединяются друг с другом при помощи дес­мосом, на их апикальной поверхности имеются микровор­синки. Предполагается, что эти клетки секретируют жидкий компонент сока поджелудочной железы. Межацинозные про­токи впадают во внутридольковые протоки (ductus intralobularis), выстланные кубическими эпителиоцитами, содержа­щими круглые ядра и слабо развитые органеллы (комплекс Гольджи, митохондрии, рибосомы и гладкая ЭПС). Внутри­дольковые протоки впадают в междольковые (ductus interlo- bularis), лежащие в прослойках междольковой соединитель­ной ткани и несущие секрет в общий проток поджелудочной железы (ductus glandulae).

Читайте также:  При увеличении головки поджелудочной железы

Междольковые протоки и общий проток железы выстланы призматическим эпителием, среди клеток которого имеются бокаловидные экзокриноциты и эндокриноциты (I-клетки), вырабатывающие панкреазимин и холецистокинин. Под эпителием находится собственная пластинка слизистой оболочки протоков.

Эндокринная часть поджелудочной железы. Эта часть поджелудочной железы состоит из панкреатических островков. Их количество составляет 1-2 мил­лиона. Наибольшая часть островков сконцентрирована хвостовой части железы. Форма островков разнообразная, овальная или круглая; размеры 100-300 мкм. В coстав островков входят клетки, называемые инсулоцитами. Они имеют меньшие размеры по сравнению ациноцитами, светлоокрашенную цитоплазму, содержат комплекс Гольджи, гранулярную ЭПС, митохондрии и секреторные гранулы. В зависимости от строения и содер­жания гранул различают 5 типов инсулоцитов: 1) В-клетки (базофильные): 2) А-клетки (ацидофильные); 3) D-клетки (дендритные); 4) D1-клетки (аргирофильные); 5) РР-клетки.

В-клетки расположены в центре островков, их количе­ство составляет около 70 %. Гранулы В-клеток, имеющие ди­аметр около 275 нм, растворяются в спирте и не растворяют­ся в воде. В центре гранул имеется уплотнение, окруженное светлым ободком. Гранулы окрашиваются основными краси­телями (альдегидфуксином и генциановым фиолетовым) в синий цвет. В гранулах содержится инсулин и — иногда — цинк, являющийся консервантом инсулина. Функция В-кле­ток — выделение инсулина. Инсулин стимулирует усвоение клетками простых сахаров, которые под его влиянием синте­зируются в гликоген и депонируются в цитоплазме клеток. При избытке инсулина в организме снижается уровень саха­ра в крови.

А-клетки располагаются преимущественно по перифе­рии островков, их количество — 20 %. Гранулы А-клеток имеют диаметр около 230 нм, растворяются в воде и не ра­створяются в спирте, окрашиваются кислыми красителями (кислым фуксином — в ярко-красный цвет). В центре гранул имеется плотная сердцевина, окруженная светлым обод­ком. В гранулах содержится глюкагон, под влиянием кото­рого гликоген клеток расщепляется на простые сахара, по­ступающие в кровь. Это приводит к повышению сахара в крови (гипергликемия).

D-клетки имеют неправильную форму (грушевидную, звездчатую), располагаются по периферии островков, их ко­личество — 5-10 %. Гранулы D-клеток размером около 325 нм не имеют светлого ободка, содержат соматостатин, под влия­нием которого задерживается выделение инсулина В-клетками и глюкагона А-клетками, а также ингибируется синтез ферментов в ацинозных клетках поджелудочной железы.

Д1-клетки составляют 2-5 %, содержат гранулы диаме­тром около 160 нм. В гранулах Д1-клеток, под их мембраной, имеется светлый ободок. В гранулах, окрашивающихся сере­бром, содержится ВИП, снижающий артериальное давление и стимулирующий секрецию ферментов и гормонов поджелу­дочной железой.

РР-клетки составляют 2-5 %, располагаются по перифе­рии островков; их гранулы имеют размеры около 140 нм. Функция РР-клеток — секреция панкреатического полипептида, который стимулирует выделение желудочного и панкреатического соков.

Промежуточные клетки (ацинозно-инсулярные клетки) актеризуются содержанием в их цитоплазме зимогенных присущих ациноцитам, и гранул типа А, В и D, нахо­дящихся в инсулоцитах. Промежуточные клетки располага­ются около островков между ацинусами. В зависимости от характера инсулярных гранул промежуточные клетки по­дразделяются на клетки 3 типов: А, В и D.

Инсулярные и зимогенные гранулы промежуточных кле­ток могут поступать в выводные протоки экзокринной части поджелудочной железы и в кровеносное русло. С током крови трипсиноподобные ферменты зимогенных гранул транспор­тируются к В-клеткам островков и способствуют освобожде­нию инсулина из проинсулина.

Кровоснабжение поджелудочной железы обеспечивается ветвями верхнебрыжеечной и чревной артерий. Существуют 2 версии васкуляризации поджелудочной железы. Согласно одной из них, артерии ветвятся по ходу выводных протоков и, достигнув ацинусов и островков, делятся на артериолы, одни из которых направляются к ацинусам, другие — к островкам, где разветвляются на фенестрированные капилляры, окру­женные перикапиллярными пространствами. Затем капилля­ры от ацинусов и островков собираются в венулы, которые впадают в вены, идущие рядом с одноименными артериями.

Согласно другой версии, артериолы подходят только к ос­тровкам, разветвляются на фенестрированные капилляры, проходящие через островки и впадающие в выносящие арте­риолы, которые разветвляются на вторичную капиллярную сеть, оплетающую ацинусы. Венозная кровь от поджелудоч­ной железы транспортируется по одноименной вене в ворот­ную вену.

Лимфатическая система поджелудочной железы представлена лимфатическими капиллярами, которые слепо на­чинаются от ацинусов и островков и впадают в лимфатиче­ские сосуды, расположенные рядом с кровеносными.

Иннервация поджелудочной железы осуществляется эфферентными симпатическими и парасимпатическими нервными волокнами, а также афферентными волокнами. В прослойках соединительной ткани железы имеются интрамуральные ганглии. Эфферентные симпатические волокна — это аксоны афферентных нейронов симпатических ганглиев, парасимпатические волокна — аксоны эфферентных нейро­нов интрамуральных ганглиев. К парасимпатическим ней­ронам подходят волокна блуждающего нерва. Эфферентные нервные волокна заканчиваются моторными нервными окончаниями на миоцитах кровеносных сосудов и секретор­ными нервными окончаниями — на железистых клетках. Афферентные нервные волокна — это дендриты чувстви­тельных нейронов нервных ганглиев, которые заканчивают­ся рецепторами, в том числе пластинчатыми тельцами Фатера—Пачини.

Возрастные изменения поджелудочной железы харак­теризуются уменьшением панкреатических островков в по­жилом возрасте и снижением функций эндокринной и экзокринной частей.

Регенерация поджелудочной железы осуществляется за счет внутриклеточного обновления органелл. В связи с низ­кой митотической активностью железистых клеток они по­сле гибели не восстанавливаются.

ЛЕКЦИЯ 23 ТОНКАЯ КИШКА, ТОЛСТАЯ КИШКА.

Дата добавления: 2015-01-30; просмотров: 1854; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9476 — | 7337 — или читать все…

Читайте также:

Источник