Гормон поджелудочной железы стимулирующий распад гликогена

Гормонами поджелудочной железы являются инсулин и глюкагон.

Глюкагон

Строение

Представляет собой полипептид, включающий 29 аминокислот с молекулярной массой 3,5 кДа и периодом полураспада 3-6 мин.

Синтез

Осуществляется в клетках поджелудочной железы и в клетках тонкого кишечника.

Регуляция синтеза и секреции

Активируют: гипогликемия, адреналин.
Уменьшают: глюкоза, жирные кислоты.

Механизм действия

Аденилатциклазный активирующий.

Мишени и эффекты

Конечным эффектом является повышение концентрации глюкозы и жирных кислот в крови.

Жировая ткань

  • повышает активность внутриклеточной гормон-чувствительной ТАГ-липазы и, соответственно, стимулирует липолиз.

Печень

  • активация глюконеогенеза и гликогенолиза,
  • за счет повышенного поступления жирных кислот из жировой ткани усиливает кетогенез.

Патология

Гиперфункция

Глюкагонома – редко встречающееся новообразование из группы нейроэндокринных опухолей. У больных отмечается гипергликемия и поражение кожи и слизистых оболочек.

Инсулин

Дополнительная, более подробная информация, об инсулине находится на следующей странице.

Строение

Представляет собой полипептид из 51 аминокислоты, массой 5,7 кД, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками.

Синтез

Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.

Регуляция синтеза и секреции

Активируют синтез и секрецию:

  • глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,
  • жирные кислоты и аминокислоты,
  • влияния n.vagus – находится под контролем гипоталамуса, активность которого определяется концентрацией глюкозы крови,
  • гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ингибирующий полипептид,
  • хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.

Уменьшают: влияние симпато-адреналовой системы.

Механизм действия

Осуществляется через  рецепторы с тирозинкиназной активностью (подробно).

Мишени и эффекты

Основным эффектом является снижение концентрации глюкозы в крови благодаря усилению транспорта глюкозы внутрь миоцитов и адипоцитов и  активации внутриклеточных реакций утилизации глюкозы:

  • активируя фосфодиэстеразу, которая разрушает вторичный мессенджер цАМФ, инсулин прерывает эффекты адреналина и глюкагона на печень и жировую ткань. 
  • в мышцах и жировой ткани стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • в печени и мышцах ускоряет синтез гликогена (активация гликогенсинтазы).
  • в печени, мышцах и адипоцитах инсулин стимулирует гликолиз, активируя фосфофруктокиназу и пируваткиназу.
  • полученный в гликолизе пируват превращается в ацетил-SКоА под влиянием активированного инсулином пируватдегидрогеназного комплекса, и далее используется для синтеза жирных кислот. Превращение ацетил-SКоА в малонил-SКоА, первый субстрат синтеза жирных кислот, также стимулируется инсулином (ацетил-SКоА-карбоксилаза).
  • в мышцах усиливает транспорт нейтральных аминокислот в миоциты и стимулирует трансляцию (рибосомальный синтез белков).

Ряд эффектов инсулина заключается в изменении транскрипции генов и скорости трансляции ферментов, отвечающих за обмен веществ, за рост и деление клеток. 

Благодаря этому индуцируется синтез ферментов метаболизма

  • углеводов в печени (глюкокиназа, пируваткиназа, глюкозо-6-фосфатдегидрогеназа),
  • липидов в печени (АТФ-цитрат-лиаза, ацетил-SКоА-карбоксилаза, синтаза жирных кислот, цитозольная малатдегидрогеназа) и адипоцитах (ГАФ-дегидрогеназа, пальмитатсинтаза, липопротеинлипаза).

и происходит репрессия фосфоенолпируват-карбоксикиназы (подавление глюконеогенеза).

Инактивация инсулина 

Инактивация инсулина начинается после интернализации инсулин-рецепторного комплекса и образования эндосомы, в которой и происходит деградация инсулина.  Участвуют две ферментные системы:

  1. Глутатион-инсулин-трансгидрогеназа, которая восстанавливает дисульфидные связи между цепями А и В, в результате чего гормон распадается.
  2. Инсулиназа (инсулин-протеиназа), гидролизующая инсулин до аминокислот. 

Период полужизни инсулина не превышает 5-6 минут.  Происходит деградация в основном в печени и почках, но и другие ткани принимают в этом участие. Также в почках инсулин может фильтроваться, захватываться эпителиоцитами проксимальных канальцев и разрушаться до аминокислот.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Источник

функции
поджелудочной железы

Поджелудочная
железа – железа со смешанной функцией.
Морфологической

единицей
железы служат островки Лангерганса,
преимущественно они

расположены
в хвосте железы. Бета-клетки островков
вырабатывают инсулин,

альфа-клетки
– глюкагон, дельта-клетки – соматостатин.
В экстрактах ткани

поджелудочной
железы обнаружены гормоны ваготонин и
центропнеин.

Инсулин
регулирует
углеводный обмен, снижает концентрацию
сахара в крови,

способствует
превращению глюкозы в гликоген в печени
и мышцах. Он повышает

проницаемость
клеточных мембран для глюкозы: попадая
внутрь клетки, глюкоза

усваивается.
Инсулин задерживает распад белков и
превращение их в глюкозу,

стимулирует
синтез белка из аминокислот и их активный
транспорт в клетку,

регулирует
жировой обмен путем образования высших
жирных кислот из продуктов

углеводного
обмена, тормозит мобилизацию жира из
жировой ткани.

В
бета-клетках инсулин образуется из
своего предшественника проинсулина.
Он

переносится
в клеточные аппарат Гольджи, где
происходят начальные стадии

превращения
проинсулина в инсулин.

В
основе регуляции инсулина лежит
нормальное содержание глюкозы в крови:

гипергликемия
приводит к увеличению поступления
инсулина в кровь, и наоборот.

Паравентрикулярные
ядра гипоталамуса повышают активность
при

гипергликемии,
возбуждение идет в продолговатый мозг,
оттуда в ганглии

поджелудочной
железы и к бета-клеткам, что усиливает
образование инсулина и

его
секрецию. При гипогликемии ядра
гипоталамуса снижают свою активность,
и

секреция
инсулина уменьшается.

Гипергликемия
непосредственно приводит в возбуждение
рецепторный аппарат

островков
Лангерганса, что увеличивает секрецию
инсулина. Глюкоза также

непосредственно
действует на бета-клетки, что ведет к
высвобождению инсулина.

Глюкагон
повышает
___________количество глюкозы, что также
ведет к усилению

продукции
инсулина. Аналогично действует гормоны
надпочечников.

Вегетативная
нервная система регулирует выработку
инсулина посредством

блуждающего
и симпатического нервов. Блуждающий
нерв стимулирует выделение

инсулина,
а симпатический тормозит.

Количество
инсулина в крови определяется активностью
фермента инсулиназы,

который
разрушает гормон. Наибольшее количество
фермента находится в печени__и
мышцах. При однократном протекании
крови через печень разрушается до 50 %

находящегося
в крови инсулина.

Важную
роль в регуляции секреции инсулина
выполняет гормон соматостатин,

который
образуется в ядрах гипоталамуса и
дельта-клетках поджелудочной

железы.
Соматостатин тормозит секрецию инсулина.

Активность
инсулина выражается в лабораторных и
клинических единицах.

Глюкагон
принимает участие в регуляции углеводного
обмена, по действию на

обмен
углеводов он является антагонистом
инсулина. Глюкагон расщепляет

гликоген
в печени до глюкозы, концентрация глюкозы
в крови повышается.

Глюкагон
стимулирует расщепление жиров в жировой
ткани.

Читайте также:  Реактивные изменения поджелудочной железы у ребенка лечение

Механизм
действия глюкагона обусловлен его
взаимодействием с особыми

специфическими
рецепторами, которые находятся на
клеточной мембране. При

связи
глюкагона с ними увеличивается активность
фермента аденилатциклазы и

концентрации
цАМФ, цАМФ способствует процессу
гликогенолиза.

Регуляция
секреции глюкагона. На образование
глюкагона в альфа-клетках

оказывает
влияние уровень глюкозы в крови. При
повышении глюкозы в крови

происходит
торможение секреции глюкагона, при
понижении – увеличение. На

образование
глюкагона оказывает влияние и передняя
доля гипофиза.

Гормон
роста соматотропин
повышает
активность альфа-клеток. В

противоположность
этому гормон дельта-клетки – соматостатин
тормозит

образование
и секрецию глюкагона, так как он блокирует
вхождение в альфа-

клетки
ионов Ca, которые необходимы для образования
и секреции глюкагона.

Физиологическое
значение липокаина.
Он способствует утилизации жиров за

счет
стимуляции образования липидов и
окисления жирных кислот в печени, он

предотвращает
жировое перерождение печени.

Функции
ваготонина

повышение тонуса блуждающих нервов,
усиление их

активности.

Функции
центропнеина

возбуждение дыхательного центра,
содействие

расслаблению
гладкой мускулатуры бронхов, повышение
способности гемоглобина

связывать
кислород, улучшение транспорта кислорода.

Нарушение
функции поджелудочной железы.

Уменьшение
секреции инсулина приводит к развитию
сахарного диабета,

основными
симптомами которого являются гипергликемия,
глюкозурия, полиурия

(до
10 л в сутки), полифагия (усиленный
аппетит), полидиспепсия (повышенная

жажда).

Увеличение
сахара в крови у больных сахарным
диабетом является результатом

потери
способности печени синтезировать
гликоген из глюкозы, а клеток –

утилизировать
глюкозу. В мышцах также замедляется
процесс образования и

отложения
гликогена.

У
больных сахарным диабетом нарушаются
все виды обмена.

6.
Гормоны надпочечников.
Глюкокортикоиды
__Надпочечники
– парные
железы, расположенные над верхними
полюсами

почек.
Они имеют важное жизненное значение.
Различают два типа гормонов:

гормоны
коркового слоя и гормоны мозгового
слоя.

Гормоны
коркового слоя длятся на три группы:

1)
глюкокортикоиды
(гидрокортизон, кортизон, кортикостерон)
;

2)
минералокортикоиды
(альдестерон, дезоксикортикостерон)
;

3)
половые
гормоны (андрогены, эстрогены, прогестерон)
.

Глюкокортикоиды
синтезируются в пучковой зоне коры
надпочечников. По

химическому
строению гормоны являются стероидами,
образуются из холестерина,

для
синтеза необходима аскорбиновая кислота.

Физиологическое
значение глюкокортикоидов.

Глюкокортикоиды
влияют на обмен углеводов, белков и
жиров, усиливают

процесс
образования глюкозы из белков, повышают
отложение гликогена в печени,

по
своему действию являются антагонистами
инсулина.

Глюкокортикоиды
оказывают катаболическое влияние на
белковый обмен,

вызывают
распад тканевого белка и задерживают
включение аминокислот в белки.

Гормоны
обладают противовоспалительным
действием, что обусловлено

снижением
проницаемости стенок сосуда при низкой
активности фермента

гиалуронидазы.
Уменьшение воспаления обусловлено
торможением освобождения

арахидоновой
кислоты из фосфолипидов. Это ведет к
ограничению синтеза

простагландинов,
которые стимулируют воспалительный
процесс.

Глюкокортикоиды
оказывают влияние на выработку защитных
антител:

гидрокортизон
подавляет синтез антител, тормозит
реакцию взаимодействия

антитела
с антигеном.

Глюкокортикоиды
оказывают выраженное влияние на
кроветворные органы:

1)
увеличивают количество эритроцитов за
счет стимуляции красного костного

мозга;

2)
приводят к обратному развитию вилочковой
железы и лимфоидной ткани, что

сопровождается
уменьшением количества лимфоцитов.

Выделение
из организма осуществляется двумя
путями:

1)
75–90 % поступивших гормонов в кровь
удаляется с мочой;

2)
10–25 % удаляется с калом и желчью.

Регуляция
образования глюкокортикоидов.

Важную
роль в образовании глюкокортикоидов
играет кортикотропин передней

доли
гипофиза. Это влияние осуществляется
по принципу прямых и обратных

связей:
кортикотропин повышает продукцию
глюкокортикоидов, а избыточное их

содержание
в крови приводит к торможению кортикотропина
в гипофизе.

В
ядрах переднего отдела гипоталамуса
синтезируется

нейросекрет
кортиколиберин,
который стимулирует образование
кортикотропина

в
передней доле гипофиза, а он, в свою
очередь, стимулирует образование

глюкокортикоида.
Функциональное отношение «гипоталамус
– передняя доля__гипофиза – кора
надпочечников» находится в единой
гипоталамо-гипофизарно-

надпочечниковой
системе, которая играет ведущую роль в
адаптационных

реакциях
организма.

Адреналин

гормон мозгового вещества надпочечников
– усиливает

образование
глюкокортикоидов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #

    14.02.201524.91 Mб29Эндодонтия.djvu

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Инсулин
относится к гормонам белковой природы.
Он синтезируется b-клетками поджелудочной
железы. Инсулин является одним из
важнейших анаболических гормонов.
Связывание инсулина с клетками-мишенями
приводит к процессам, которые увеличивают
скорость синтеза белка, а также накопление
в клетках гликогена и липидов, являющихся
резервом пластического и энергетического
материала. Инсулин, возможно за счет
своего анаболического эффекта,
стимулирует рост и размножение клеток.
Молекула инсулина состоит из двух
полипептидных цепей — А-цепи и В-цепи.
В состав А-цепи входит 21 аминокислотный
остаток, в состав В-цепи — 30. Эти цепи
связаны между собой двумя дисульфидными
мостиками: один между А7 и В7 ( номера
аминокислот,

считая
с N-концов полипептидных цепей ), второй
между А20 и В19. Третий дисульфидный
мостик находится в цепи А, связывая А6
и А11. Главным физиологическим стимулом
выделения инсулина из b-клеток в кровь
является повышение содержания глюкозы
в крови. Влияние инсулина на обмен
углеводов можно охарактеризовать

следующими
эффектами:

1.Инсулин
увеличивает проницаемость клеточных
мембран для глюкозы в так называемых
инсулин-зависимых тканях.

2.Инсулин
активирует окислительный распад
глюкозы в клетках.

3.Инсулин
ингибирует распад гликогена и активирует
его син тез в гепатоцитах.

4.Инсулин
стимулирует превращение глюкозы в
резервные триглицериды.

5.Инсулин
ингибирует глюконеогенез, снижая
активность некоторых ферментов
глюконеогенеза.

Влияние
инсулина на обмен липидов складывается
из ингибирования липолиза в липоцитах
за счет дефосфорилирования
триацилглицероллипазы и стимуляции
липогенеза.

Инсулин
оказывает анаболическое действие на
обмен белков: он стимулирует поступление
аминокислот в клетки, стимулирует
транскрипцию многих генов и стимулирует,
соответственно, синтез многих белков,
как внутриклеточных, так и внеклеточных.

ГЛЮКАГОН

Глюкагон
представляет собой гормон полипептидной
природы, выделяемый a-клетками
поджелудочной железы. Основной
функцией этого гормона является
поддержание энергетического гомеостаза
организма за счет мобилизации эндогенных
энергетических рессурсов, этим
объясняется его суммарный катаболический
эффект.

В
состав полипептидной цепи глюкагона
входит 29 аминокислотных остатков,
его молекулярная масса 4200, в его составе
от сутствует цистеин. Глюкагон был
синтезирован химическим путем, чем
была окончательно подтверждена его
химическая структура.

Основным
местом синтеза глюкагона являются
a-клетки поджелудочной железы, однако
довольно большие количества этого
гормона образуются и в других органах
желудочно-кишечного тракта. Синтезируется
глюкагон на рибосомах a-клеток в виде
более длин ного предшественника с
молекулярной массой около 9000. В ходе
процессинга происходит существенное
укорочение полипептидной цепи,после
чего глюкагон секретируется в кровь.
В крови он находится в свободной форме,
его концентрация в сыворотке крови
составляет 20-100 нг/л. Период его полужизни
равняется примерно 5 минутам. Основная
часть глюкагона инактивируется в
печени путем гидролитического отщепления
2 аминокислотных остатков с N-конца
молекулы. Секреция глюкагона
a-клетками поджелудочной железы
тормозится высоким уровнем глюкозы в
крови, а также соматостатином, выделяемым
D-клетками поджелудочной железы.
Возможно, что секреция глюкагона
ингибируется также инсулином или ИФР-1.
Стимулируется секреция понижением
концентрации глюкозы в крови, однако
механизм этого эффекта неясен. Кроме
того, секрецию глюкагона стимулируют
соматотропный гормон гипофиза, аргинин
и Са2+.

Читайте также:  Киста в поджелудочной железе может ли быть температура

Механизм
действия глюкагона достаточно хорошо
изучен. Ре цепторы для гормона
локализованы в наружной клеточной
мембране. Образование гормонрецепторных
комплексов сопровождается активацией
аденилатциклазы и увеличением в клетках
концентрации цАМФ, сопровождающимся
активацией протеинкиназы и
фосфорилированием

белков
с изменением функциональной активности
последних. Под действием глюкагона
в гепатоцитах ускоряется мобилизация
гликогена с выходом глюкозы в кровь.
Этот эффект гормона обусловлен активацией
гликогенфосфорилазы и ингибированием
гликогенсинтетазы в результате их
фосфорилирования. Следует заметить,
что глюкагон, в отличие от адреналина,
не оказывает влияния на скорость
гликогенолиза в мышцах.

Глюкагон
стимулирует липолиз в липоцитах,
увеличивая тем самым поступление в
кровь глицерола и высших жирных кислот.
В печени гормон тормозит синтез жирных
кислот и холестерола из ацетил-КоА, а
накапливающийся ацетил-КоА используется
для синтезаацетоновых тел. Таким
образом, глюкагон стимулирует кетогенез.

В
почках глюкагон увеличивает клубочковую
фильтрацию, по-видимому, этим объясняется
наблюдаемое после введения глюкагона
повышение экскреции ионов натрия,
хлора, калия , фосфора и мочевой
44444кислоты.

Соседние файлы в папке 1-30

  • #
  • #
  • #
  • #
  • #
  • #

Источник

Распад гликогена с образованием глюкозы происходит в период между приемами пищи, физической работе, при стрессе.

Пути мобилизации гликогена:

1. фосфоролитический.

2. амилолитический путь распада гликогена происходит при участии фермента амилазы.

Фосфоролитический путь – основной путь распада гликогена с образованием глюкозы:

В мышечной ткани нет фермента глюкозо-6-фосфатазы, поэтому гликоген мышц не распадается с

образованием глюкозы, а окисляется или аэробным или анаэробным путем с освобождением энергии. Через

10-18 часов после приема пищи запасы гликогена в печени значительно истощаются.

Регуляция уровня глюкозы в крови. Роль ЦНС, механизм действия инсулина, адреналина, глюкагона,

СТГ, глюкокортикоидов, тироксина и их влияние на состояние углеводного обмена.

Ведущее значение в регуляции углеводного обмена принадлежит центральной нервной системе. Снижение уровня глюкозы в крови приводит к повышенной секреции адреналина, глюкагона, которые, поступая в орган-мишень для этих гормонов (печень), узнаются рецепторами мембран клеток печени и активируют фермент мембраны аденилатциклазу, запуская механизм, приводящий к распаду гликогена с образованием глюкозы.

Схема механизма взаимодействия адреналина и глюкагона с клеткой:

Адреналин – повышает уровень глюкозы за счет активации фермента фосфорилазы (аденилатциклазная система), которая приводит к распаду гликогена с образованием глюкозы, блокирует фермент гликогенсинтазу, т.е. синтез гликогена.

Глюкагон – действует подобно адреналину, но плюс к этому активирует ферменты глюконеогенеза.

Глюкокортикоиды – повышают уровень глюкозы крови, являясь индукторами синтеза ферментов глюконеогенеза.

СТГ актвирует глюконеогенез, тироксин активирует инсулиназу, расщепляющую инсулин, влияет на всасывание глюкозы в кишечнике.

2.4. Гликогенозы

Гликогенозы (болезни накопления гликогена) обусловлены дефектом ферментов, участвующих в распаде гликогена. Например, болезнь Гирке связана с отсутствием фермента глюкозо-6-фосфатазы, при этом наблюдается избыточное накопление гликогена в печени, гипогликемия и ее последствия. Болезнь Мак-Ардла: причина — отсутствие фосфорилазы в мышечной ткани. При этом уровень глюкозы в крови в норме, но наблюдается слабость мышечной ткани и снижена способность выполнять физическую работу. Болезнь Андерсена связана с дефектом, ветвящего фермента, что приводит к накоплению гликогена в печени с очень длинными наружными и редкими точками ветвления, вследствие этого – желтуха, цирроз печени, печеночная недостаточность, летальный исход (неразветвленный гликоген разрушает гепатоциты).

2,5 Концентрация глюкозы в крови поддерживается в течение суток на постоянном уровне 3,5-6,0 ммоль/л. После приема пищи уровень глюкозы возрастает в течение часа до 8 ммоль/л, а затем возвращается к норме. В организме постоянный уровень глюкозы в крови поддерживается благодаря существованию нейрогуморальных механизмов. Основным показателем состояния углеводного обмена служит содержание глюкозы в крови и моче.

ГИПЕРГЛИКЕМИЯ- состояние, при котором уровень глюкозы выше нормы. Причины:

1. Физиологические — алиментарная, эмоциональная.

2. Патологические – сахарный диабет; стероидный диабет (Иценко-Кушинга) – гиперпродукция глюкокортикоидов коры надпочечников; гиперпродукция адреналина, глюкагона, СТГ тироксина.

ГИПОГЛИКЕМИЯ — состояние, при котором уровень глюкозы ниже нормы. Причины:

1. Сниженный выход глюкозы: заболевания печени, эндокринные заболевания (дефицит гормона роста, кортизола), наследственные метаболические нарушения (дефицит гликогенсинтетазы, галактоземия, непереносимость фруктозы, печеночные формы гликогенозов).

2. Увеличенная утилизации глюкозы: снижение запасов жиров (нарушение питания), нарушение окисления жирных кислот, гиперплазия β-кл. подж. железы, передозировка инсулина, болезнь Аддисона – гипопродукция глюкокортикоидов.

ГЛЮКОЗУРИЯ – появление сахара в моче. Если уровень глюкозы в крови составляет 8-10 ммоль/л, то нарушается

почечный порог для глюкозы и она появляется в моче. Причины:

1. физиологические:

— алиментарная глюкозурия

— глюкозурия беременных

— нейрогенная на почве стрессовых состояний

2. патологические:

— сахарный диабет

— острый панкреатит

— острые инфекционные заболевания

2.6. Сахарный диабет, биохимическая характеристика патогенеза.

Это заболевание, возникающее вследствие абсолютного или относительного дефицита инсулина.

Инсулин – единственный гормон, понижающий уровень глюкозы в крови. Механизм:

-повышает проницаемость клеточных мембран для глюкозы в клетках жировой и мышечной ткани, под его влиянием белки-транспортеры ГЛЮТ-4 перемешаются из цитоплазмы в мембрану клетки, где соединяются с глюкозой и транспортируют её во внутрь клетки;

-активирует гексокиназу, фруктокиназу, пируваткиназу (стимулирует гликолиз);

-активирует гликогенсинтетазу (стимулирует синтез гликогена);

-активирует дегидрогеназу пентозо-фосфатного пути;

-по механизму хронической регуляции является индуктором синтеза гексокиназы и репрессором синтеза ферментов глюконеогенеза (блокирует глюконеогенез);

Читайте также:  Фиброз а поджелудочной железы

-30% углеводов превращает в липиды;

-стимулирует ЦТК, активируя фермент синтетазу, которая катализирует реакцию взаимодействия ацетил-КоА с ЩУК;

Сахарный диабет (СД) классифицируют с учетом различия генетических факторов и клинического течения на две основные формы: диабет I типа – инсулинзависимый (ИЗСД), и диабет II типа – инсулиннезависимый (ИНСД).

ИЗСД – заболевание, вызванное разрушением β-клеток островков Лангерханса поджелудочной железы, вследствие аутоиммунных реакций, вирусных инфекций (вирус оспы, краснухи, кори, эпидемический паротит, аденовирус). При СД снижено соотношение инсулин/глюкагон. При этом ослабевает стимуляция процессов депонирования гликогена и жиров, и усиливается мобилизация энергоносителей. Печень, мышцы и жировая ткань даже после приема пищи функционируют в режиме постабсорбтивного состояния.

Гипергликемия – повышение конц. глюкозы в крови.

Она обусловлена снижением скорости использования глюкозы тканями вследствие недостатка инсулина или снижения биологического действия инсулина в тканях-мишенях. При дефиците инсулина уменьшается количество белков-переносчиков глюкозы (ГЛЮТ-4) на мембранах инсулинзависимых клеток (жировой ткани мышц). В мышцах и печени глюкоза не депонируется в виде гликогена. В жировой ткани уменьшается скорость синтеза и депонирования жиров. Активируется глюконеогенез из аминокислот, глицерола и лактата.

Глюкозурия – выделение глюкозы с мочой.

В норме проксимальные канальцы почек реабсорбируют всю глюкозу, если ее уровень не превышает 8,9 ммоль/л. Повышение концентрации глюкозы в крови превышает концентрационный почечный порог, что становится причиной появления ее в моче.

Кетонемия – повышение концентрации в крови кетоновых тел.

Жиры не депонируются, а ускоряется их катаболизм. Повышается концентрация неэтерифицированных жирных кислот, которые захватывает печень и окисляет их до ацетил – КоА. Ацетил-КоА превращается в β-гидроксимасляную и ацетоуксусную кислоты. В тканях происходит декарбоксилирование ацетоацетата до ацетона, поэтому от больных исходит его запах. Увеличение концентрации кетоновых тел в крови (выше 20 мг/л) приводит к кетонурии. Накопление кетоновых тел снижает буферную емкость крои и вызывает ацидоз.

Дефицит инсулина приводит к снижению скорости синтеза белков и усилению их распада. Это вызывает повышение концентрации аминокислот в крови, которые дезаминируются в печени. Образующийся при этом аммиак вступает в орнитиновый цикл, что приводит к увеличению концентрации мочевины в крови и моче – азотемия.

Полиурия – повышенное мочеотделение (3-4л в сутки и выше), т.к. глюкоза повышает осмотическое давление.

Полидипсия – постоянная жажда, сухость во рту, вследствие потери воды.

Полифагия – испытывают голод, часто едят, но теряют в массе тела, т.к. глюкоза не является источником энергии — «голод среди изобилия».

ИНСД – возникает в результате относительного дефицита инсулина вследствие:

— нарушения секреции инсулина

— нарушения превращения проинсулина в инсулин

— повышения катаболизма инсулина

-дефекта рецептора инсулина, повреждения внутриклеточных посредников инсулинового сигнала.

Поражает людей старше 40 лет, характеризуется высокой частотой семейных форм. Главная причина поздних осложнений сахарного диабета – гипергликемия, которая приводит к повреждению кровеносных сосудов и нарушению функций различных тканей и органов. Одним из основных механизмов повреждения тканей при сахарном диабете является гликозилирование белков, приводящее к изменению их конформации и функций. Макроангиопатии проявляются в поражении крупных и средних сосудов сердца, мозга, нижних конечностей (гангрена). Микроангиопатия является результатом повреждения капилляров и мелких сосудов и проявляется в форме нефро-, нейро- и ретинопатии. В возникновении микроангиопатий определенную роль играет гликозилирование белков, что приводит к возникновению нефропатии (нарушение функции почек) и ретинопатии (вплоть до потери зрения).

Коллаген составляет основу базальных мембран капилляров. Повышенное содержание гликозилированного коллагена ведет к уменьшению его эластичности, растворимости, к преждевременному старению, развитию контрактур. В почках такие изменения приводят к запустению клубочков и хронической почечной недостаточности.

Гликозилированные липопротеины, накапливаясь в сосудистой стенке, приводят к развитию гиперхолестеринемии и липидной инфильтрации. Они служат основой атером, происходит нарушение сосудистого тонуса, что приводит к атеросклерозу.

2.5.Проба на толерантность к глюкозе.

После приема пищи концентрация глюкозы может достигать 300-500 мг/дл и сохраняется на высоком уровне в постабсорбтивном периоде, т.е. снижается толерантность к глюкозе и наблюдается в случаях скрытой формы сахарного диабета. В этих случаях у людей отсутствуют клинические симптомы, характерные для СД, а концентрация глюкозы натощак соответствует норме.

Для выявления скрытой формы сахарного диабета проводится оральный тест на толерантность к глюкозе. Для этого определяют натощак содержание глюкозы в крови. После этого исследуемый получает нагрузку глюкозой из расчета 1г на кг массы, затем каждые 30 минут в течение 3-х часов определяют уровень глюкозы в крови. Результаты представляют в виде кривой.

 
 

3. Лабораторно-практическиая работа:

3.1 . Определение глюкозы в крови с помощью глюкометра One Touch ultra.

Определить содержание глюкозы натощак у студента. Проведение анализа. Подведите каплю крови на пальце руки к зоне теста на верхней части тест-полоски и удерживайте ее в таком положении до полного заполнения капилляра. На экране появляется отчет в течение 5 секунд, после чего обозначается величина уровня глюкозы в ммоль/л. После удаления тест-полоски изображение на экране прибора гаснет и он готов к следующему проведению анализа.

Ход работы:Вымойте руки теплой водой с мылом и тщательно высушите. Обработайте палец руки ватой, смоченной в этиловом спирте и подсушите его. Стерильным скарификатором проколите кожу пальца и выдавите из него капельку крови, которую введите в капилляр тест-полоски. Затем обработайте место прокола ватой, смоченной в этиловом спирте.

2. Дать выпить сладкий чай.

3. Определить содержание глюкозы через 30 минут с момента принятия нагрузки.

4. Определить содержание глюкозы через 2,5 часа с момента принятия нагрузки.

Дата добавления: 2015-09-07; просмотров: 7727; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10003 — | 7485 — или читать все…

Читайте также:

Источник